Tính: 1, $\frac{6}{√7+2}$ + √ $\frac{2}{8+3 √7}$ 2, ( √10+ √2)(6-2√5)√(3+√5) 27/07/2021 Bởi Lydia Tính: 1, $\frac{6}{√7+2}$ + √ $\frac{2}{8+3 √7}$ 2, ( √10+ √2)(6-2√5)√(3+√5)
Đáp án: 2) 16 Giải thích các bước giải: \(\begin{array}{l}1)\dfrac{6}{{\sqrt 7 + 2}} + \sqrt {\dfrac{2}{{8 + 3\sqrt 7 }}} \\ = \dfrac{{6\sqrt 7 – 12}}{{7 – 4}} + \sqrt {\dfrac{4}{{16 + 6\sqrt 7 }}} \\ = \dfrac{{6\sqrt 7 – 12}}{3} + \dfrac{2}{{\sqrt {9 + 2.3.\sqrt 7 + 7} }}\\ = 2\sqrt 7 – 4 + \dfrac{2}{{\sqrt {{{\left( {3 + \sqrt 7 } \right)}^2}} }}\\ = 2\sqrt 7 – 4 + \dfrac{2}{{3 + \sqrt 7 }}\\ = 2\sqrt 7 – 4 + \dfrac{{6 + 2\sqrt 7 }}{{9 – 7}}\\ = 2\sqrt 7 – 4 + \dfrac{{6 + 2\sqrt 7 }}{2}\\ = 2\sqrt 7 – 4 + 3 + \sqrt 7 = 3\sqrt 7 – 1\\2)\sqrt 2 \left( {\sqrt 5 + 1} \right)\left( {6 – 2\sqrt 5 } \right)\sqrt {3 + \sqrt 5 } \\ = \left( {\sqrt 5 + 1} \right)\left( {6 – 2\sqrt 5 } \right)\sqrt {6 + 2\sqrt 5 } \\ = \left( {6 – 2\sqrt 5 } \right)\left( {\sqrt 5 + 1} \right)\sqrt {5 + 2.\sqrt 5 .1 + 1} \\ = \left( {6 – 2\sqrt 5 } \right)\left( {\sqrt 5 + 1} \right)\sqrt {{{\left( {\sqrt 5 + 1} \right)}^2}} \\ = \left( {6 – 2\sqrt 5 } \right){\left( {\sqrt 5 + 1} \right)^2}\\ = \left( {6 – 2\sqrt 5 } \right)\left( {5 + 2\sqrt 5 + 1} \right)\\ = \left( {6 – 2\sqrt 5 } \right)\left( {6 + 2\sqrt 5 } \right)\\ = 36 – 20 = 16\end{array}\) Bình luận
Đáp án:
2) 16
Giải thích các bước giải:
\(\begin{array}{l}
1)\dfrac{6}{{\sqrt 7 + 2}} + \sqrt {\dfrac{2}{{8 + 3\sqrt 7 }}} \\
= \dfrac{{6\sqrt 7 – 12}}{{7 – 4}} + \sqrt {\dfrac{4}{{16 + 6\sqrt 7 }}} \\
= \dfrac{{6\sqrt 7 – 12}}{3} + \dfrac{2}{{\sqrt {9 + 2.3.\sqrt 7 + 7} }}\\
= 2\sqrt 7 – 4 + \dfrac{2}{{\sqrt {{{\left( {3 + \sqrt 7 } \right)}^2}} }}\\
= 2\sqrt 7 – 4 + \dfrac{2}{{3 + \sqrt 7 }}\\
= 2\sqrt 7 – 4 + \dfrac{{6 + 2\sqrt 7 }}{{9 – 7}}\\
= 2\sqrt 7 – 4 + \dfrac{{6 + 2\sqrt 7 }}{2}\\
= 2\sqrt 7 – 4 + 3 + \sqrt 7 = 3\sqrt 7 – 1\\
2)\sqrt 2 \left( {\sqrt 5 + 1} \right)\left( {6 – 2\sqrt 5 } \right)\sqrt {3 + \sqrt 5 } \\
= \left( {\sqrt 5 + 1} \right)\left( {6 – 2\sqrt 5 } \right)\sqrt {6 + 2\sqrt 5 } \\
= \left( {6 – 2\sqrt 5 } \right)\left( {\sqrt 5 + 1} \right)\sqrt {5 + 2.\sqrt 5 .1 + 1} \\
= \left( {6 – 2\sqrt 5 } \right)\left( {\sqrt 5 + 1} \right)\sqrt {{{\left( {\sqrt 5 + 1} \right)}^2}} \\
= \left( {6 – 2\sqrt 5 } \right){\left( {\sqrt 5 + 1} \right)^2}\\
= \left( {6 – 2\sqrt 5 } \right)\left( {5 + 2\sqrt 5 + 1} \right)\\
= \left( {6 – 2\sqrt 5 } \right)\left( {6 + 2\sqrt 5 } \right)\\
= 36 – 20 = 16
\end{array}\)