Tính (1 + $\frac{7}{9}$)(1 + $\frac{7}{20}$)(1 + $\frac{7}{33}$)…(1 + $\frac{7}{2900}$) 26/09/2021 Bởi Isabelle Tính (1 + $\frac{7}{9}$)(1 + $\frac{7}{20}$)(1 + $\frac{7}{33}$)…(1 + $\frac{7}{2900}$)
(1+7/9)(1+7/20)(1+7/33)…..(1+7/2900) = 16/9 . 27/20 . 40/33….2907/2900 = 2.8/1.9 . 3.9/2.10 . 4.10/3.11….51.57/50.58 = (2.3.4.5…51).(8.9.10….57)/(1.2.3….50).(9.10.11…58) = 51.8/1.58 = 408/58 = 209/29 Bình luận
Bài làm: (1 + $\frac{7}{9}$)(1 + $\frac{7}{20}$)(1 + $\frac{7}{33}$)…(1 + $\frac{7}{2900}$)= $\frac{16}{9}$ . $\frac{27}{20}$ . $\frac{40}{33}$ … $\frac{2907}{2900}$ = $\frac{2.8}{1.9}$ . $\frac{3.9}{2.10}$ . $\frac{4.10}{3.11}$ … $\frac{51.57}{50.58}$= $\frac{(2.3.4.5…51)(8.9.10…57}{(1.2.3…50)(9.10.11…58)}$ = $\frac{51.8}{1.58}$ = $\frac{408}{58}$ = $\frac{209}{29}$ *Học tốt nha!!* Bình luận
(1+7/9)(1+7/20)(1+7/33)…..(1+7/2900)
= 16/9 . 27/20 . 40/33….2907/2900
= 2.8/1.9 . 3.9/2.10 . 4.10/3.11….51.57/50.58
= (2.3.4.5…51).(8.9.10….57)/(1.2.3….50).(9.10.11…58)
= 51.8/1.58
= 408/58
= 209/29
Bài làm:
(1 + $\frac{7}{9}$)(1 + $\frac{7}{20}$)(1 + $\frac{7}{33}$)…(1 + $\frac{7}{2900}$)
= $\frac{16}{9}$ . $\frac{27}{20}$ . $\frac{40}{33}$ … $\frac{2907}{2900}$
= $\frac{2.8}{1.9}$ . $\frac{3.9}{2.10}$ . $\frac{4.10}{3.11}$ … $\frac{51.57}{50.58}$
= $\frac{(2.3.4.5…51)(8.9.10…57}{(1.2.3…50)(9.10.11…58)}$
= $\frac{51.8}{1.58}$ = $\frac{408}{58}$ = $\frac{209}{29}$
*Học tốt nha!!*