Tính: 2/2+2/6+2/12+…+2/90 1/1.2+1/2.3+1/3.4+…+1/9.10 04/07/2021 Bởi Gabriella Tính: 2/2+2/6+2/12+…+2/90 1/1.2+1/2.3+1/3.4+…+1/9.10
Đáp án + Giải thích các bước giải: \(\dfrac{2}{2}\) + \(\dfrac{2}{6}\) + \(\dfrac{2}{12}\) + … + \(\dfrac{2}{90}\) = \(\dfrac{2}{1.2}\) + \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + … + \(\dfrac{2}{9.10}\) = 2(\(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + … + \(\dfrac{1}{9.10}\)) = 2(1-\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) – \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) -\(\dfrac{1}{4}\) + … + \(\dfrac{1}{9}\)-\(\dfrac{1}{10}\)) = 2(1- \(\dfrac{1}{10}\)) = 2 . \(\dfrac{9}{10}\) = $\frac{9}{5}$ \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + … + \(\dfrac{1}{9.10}\) = 1-\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) – \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) -\(\dfrac{1}{4}\) + … + \(\dfrac{1}{9}\)-\(\dfrac{1}{10}\) = 1- \(\dfrac{1}{10}\) = \(\dfrac{9}{10}\) Bình luận
Giải thích các bước giải: `2/2+2/6+2/12+…+2/90``=2(1/2+1/6+1/12+…+1/90)``=2(1/1.2+1/2.3+1/3.4+…+1/9.10)``=2(1-1/2+1/2-1/3+1/3-1/4+…+1/9-1/10)``=2(1-1/10)``=2(10/10-1/10)``=2. 9/10``=9/5``1/1.2+1/2.3+1/3.4+…+1/9.10``=1-1/2+1/2-1/3+1/3-1/4+…+1/9-1/10``=1-1/10``=10/10-1/10``=9/10` Bình luận
Đáp án + Giải thích các bước giải:
\(\dfrac{2}{2}\) + \(\dfrac{2}{6}\) + \(\dfrac{2}{12}\) + … + \(\dfrac{2}{90}\)
= \(\dfrac{2}{1.2}\) + \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + … + \(\dfrac{2}{9.10}\)
= 2(\(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + … + \(\dfrac{1}{9.10}\))
= 2(1-\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) – \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) -\(\dfrac{1}{4}\) + … + \(\dfrac{1}{9}\)-\(\dfrac{1}{10}\))
= 2(1- \(\dfrac{1}{10}\))
= 2 . \(\dfrac{9}{10}\)
= $\frac{9}{5}$
\(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + … + \(\dfrac{1}{9.10}\)
= 1-\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) – \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) -\(\dfrac{1}{4}\) + … + \(\dfrac{1}{9}\)-\(\dfrac{1}{10}\)
= 1- \(\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
Giải thích các bước giải:
`2/2+2/6+2/12+…+2/90`
`=2(1/2+1/6+1/12+…+1/90)`
`=2(1/1.2+1/2.3+1/3.4+…+1/9.10)`
`=2(1-1/2+1/2-1/3+1/3-1/4+…+1/9-1/10)`
`=2(1-1/10)`
`=2(10/10-1/10)`
`=2. 9/10`
`=9/5`
`1/1.2+1/2.3+1/3.4+…+1/9.10`
`=1-1/2+1/2-1/3+1/3-1/4+…+1/9-1/10`
`=1-1/10`
`=10/10-1/10`
`=9/10`