Tính : √(5\2 – √6 ) – √ (11\2 – 2 √ 6 ) 01/08/2021 Bởi Aubrey Tính : √(5\2 – √6 ) – √ (11\2 – 2 √ 6 )
Đáp án: \(1 + \sqrt 6 \) Giải thích các bước giải: \(\begin{array}{l}\sqrt {\dfrac{5}{2} – \sqrt 6 } – \sqrt {\dfrac{{11}}{2} – 2\sqrt 6 } \\ = \sqrt {\dfrac{{5 – 2\sqrt 6 }}{2}} – \sqrt {\dfrac{{11 – 4\sqrt 6 }}{2}} \\ = \sqrt {\dfrac{{3 – 2.\sqrt 3 .\sqrt 2 + 2}}{2}} – \sqrt {\dfrac{{{{\left( {2\sqrt 2 } \right)}^2} – 2.2\sqrt 2 .\sqrt 3 + 3}}{2}} \\ = \sqrt {\dfrac{{{{\left( {\sqrt 3 – \sqrt 2 } \right)}^2}}}{2}} – \sqrt {\dfrac{{{{\left( {2\sqrt 2 – \sqrt 3 } \right)}^2}}}{2}} \\ = \dfrac{{\sqrt 3 – \sqrt 2 }}{{\sqrt 2 }} – \dfrac{{2\sqrt 2 – \sqrt 3 }}{{\sqrt 2 }}\\ = \dfrac{{\sqrt 2 + 2\sqrt 3 }}{{\sqrt 2 }}\\ = 1 + \sqrt 6 \end{array}\) Bình luận
Đáp án:
\(1 + \sqrt 6 \)
Giải thích các bước giải:
\(\begin{array}{l}
\sqrt {\dfrac{5}{2} – \sqrt 6 } – \sqrt {\dfrac{{11}}{2} – 2\sqrt 6 } \\
= \sqrt {\dfrac{{5 – 2\sqrt 6 }}{2}} – \sqrt {\dfrac{{11 – 4\sqrt 6 }}{2}} \\
= \sqrt {\dfrac{{3 – 2.\sqrt 3 .\sqrt 2 + 2}}{2}} – \sqrt {\dfrac{{{{\left( {2\sqrt 2 } \right)}^2} – 2.2\sqrt 2 .\sqrt 3 + 3}}{2}} \\
= \sqrt {\dfrac{{{{\left( {\sqrt 3 – \sqrt 2 } \right)}^2}}}{2}} – \sqrt {\dfrac{{{{\left( {2\sqrt 2 – \sqrt 3 } \right)}^2}}}{2}} \\
= \dfrac{{\sqrt 3 – \sqrt 2 }}{{\sqrt 2 }} – \dfrac{{2\sqrt 2 – \sqrt 3 }}{{\sqrt 2 }}\\
= \dfrac{{\sqrt 2 + 2\sqrt 3 }}{{\sqrt 2 }}\\
= 1 + \sqrt 6
\end{array}\)