tính A=1/1*2+1/3*4+…+1/99*100 đặt lần thứ 4 đừng sai đề nhá 25/09/2021 Bởi Adalynn tính A=1/1*2+1/3*4+…+1/99*100 đặt lần thứ 4 đừng sai đề nhá
Đáp án: Giải thích các bước giải: A=1−1/2+1/3−1/4+…+1/99−1/100 A=(1+1/3+…+1/99)−(1/2+1/4+…+1/100) A=(1+1/3+…+1/99)−(1/2+1/4+…+1/100) A=(1+1/2+1/3+…+1/99+1/100)−2(1/2+1/4+…+1/100) A=(1+1/2+1/3+…+1/99+1/100)−2(1/2+1/4+…+1/100) A=(1+1/2+1/3+1/4+….+1/99+1/100)−(1+1/2+…+1/50) A=(1+1/2+1/3+1/4+….+1/99+1/100)−(1+1/2+…+1/50) A=1/51+1/52+…+1/100 Bình luận
Đáp án: `A=1/(1.2)+1/(3.4)+…+1/(99.100)` `=1/1-1/2+1/3-1/4+…+1/99-1/100` `=(1/1+1/3+…+1/99)-(1/2+1/4+…+1/100)` `=(1/1+1/2+1/3+1/4+….+1/99+1/100)-2.(1/2+1/4+…+1/100)` `=1/51+1/52+…+1/100` Bình luận
Đáp án:
Giải thích các bước giải:
A=1−1/2+1/3−1/4+…+1/99−1/100
A=(1+1/3+…+1/99)−(1/2+1/4+…+1/100)
A=(1+1/3+…+1/99)−(1/2+1/4+…+1/100)
A=(1+1/2+1/3+…+1/99+1/100)−2(1/2+1/4+…+1/100)
A=(1+1/2+1/3+…+1/99+1/100)−2(1/2+1/4+…+1/100)
A=(1+1/2+1/3+1/4+….+1/99+1/100)−(1+1/2+…+1/50)
A=(1+1/2+1/3+1/4+….+1/99+1/100)−(1+1/2+…+1/50)
A=1/51+1/52+…+1/100
Đáp án:
`A=1/(1.2)+1/(3.4)+…+1/(99.100)`
`=1/1-1/2+1/3-1/4+…+1/99-1/100`
`=(1/1+1/3+…+1/99)-(1/2+1/4+…+1/100)`
`=(1/1+1/2+1/3+1/4+….+1/99+1/100)-2.(1/2+1/4+…+1/100)`
`=1/51+1/52+…+1/100`