Tính: `A=1/(1×2×3)+1/(2 ×3 ×4)+…+1/(98 ×99 ×100)` 11/11/2021 Bởi Delilah Tính: `A=1/(1×2×3)+1/(2 ×3 ×4)+…+1/(98 ×99 ×100)`
`1/(1×2×3) + 1/(2×3×4) +…+ 1/(98×99×100)` `⇒(1/(1×2) – 1/(2×3)):2 + (1/(2×3) – 1/(3×4)):2 +…+ (1/(98×99) – 1/(99×100)):2` `⇒2:(1/(1×2) – 1/(2×3) + 1/(2×3) – 1/(3×4) +…+1/(98×99) – 1/(99×100))` `=1/2 – 1/9900` Quy đồng `1/2` ta có: `⇒(4950/9900 – 1/9900) : 2` `=(4949/9900):2` `=4949/19800` Bình luận
`A=1/(1×2×3)+1/(2×3×4)+…+1/(98×99×100)` `⇒A=1/2×(2/(1×2×3)+2/(2×3×4)+…+2/(98×99×100))` `⇒A=1/2×(1/(1×2)-1/(2×3)+1/(2×3)-1/(3×4)+…+1/(98×99)-1/(99×100))` `⇒A=1/2×(1/(1×2)-1/(99×100))` `⇒A=1/2×(1/2-1/9900)` `⇒A=1/2×(4950/9900-1/9900)` `⇒A=1/2×4949/9900` `⇒A=4949/19800` Bình luận
`1/(1×2×3) + 1/(2×3×4) +…+ 1/(98×99×100)`
`⇒(1/(1×2) – 1/(2×3)):2 + (1/(2×3) – 1/(3×4)):2 +…+ (1/(98×99) – 1/(99×100)):2`
`⇒2:(1/(1×2) – 1/(2×3) + 1/(2×3) – 1/(3×4) +…+1/(98×99) – 1/(99×100))`
`=1/2 – 1/9900`
Quy đồng `1/2` ta có:
`⇒(4950/9900 – 1/9900) : 2`
`=(4949/9900):2`
`=4949/19800`
`A=1/(1×2×3)+1/(2×3×4)+…+1/(98×99×100)`
`⇒A=1/2×(2/(1×2×3)+2/(2×3×4)+…+2/(98×99×100))`
`⇒A=1/2×(1/(1×2)-1/(2×3)+1/(2×3)-1/(3×4)+…+1/(98×99)-1/(99×100))`
`⇒A=1/2×(1/(1×2)-1/(99×100))`
`⇒A=1/2×(1/2-1/9900)`
`⇒A=1/2×(4950/9900-1/9900)`
`⇒A=1/2×4949/9900`
`⇒A=4949/19800`