tính: A = $1^{2}$ + $2^{2}$ + $3^{2}$ + … + $(2n-1)^{2}$ + $2n^{2}$ 27/08/2021 Bởi Adalyn tính: A = $1^{2}$ + $2^{2}$ + $3^{2}$ + … + $(2n-1)^{2}$ + $2n^{2}$
Đáp án: $A=\dfrac13\cdot (2n-1)\cdot 2n\cdot (2n+1)+n(2n+1)$ Giải thích các bước giải: Ta có: $A=1^2+2^2+3^2+…+(2n-1)^2+(2n)^2$ $\to A=1\cdot 1+2\cdot 2+3\cdot 3+…+(2n-1)\cdot (2n-1)+(2n)\cdot (2n)$ $\to A=1\cdot (0+1)+2\cdot (1+1)+3\cdot(1+2)+…+(2n-1)\cdot (2n-2+1)+(2n)\cdot (2n-1+1)$ $\to A=0\cdot 1+1+1\cdot 2+2+2\cdot 3+3+…+(2n-1)\cdot (2n-1)+(2n-1)+(2n-1)\cdot 2n+2n$ $\to A=(0\cdot 1+1\cdot 2+2\cdot 3+…+(2n-1)\cdot 2n)+(1+2+3+…+2n)$ Lại có: $B=0\cdot 1+1\cdot 2+2\cdot 3+…+(2n-1)\cdot 2n$ $\to B=1\cdot 2+2\cdot 3+…+(2n-1)\cdot 2n$ $\to 3B=1\cdot 2\cdot 3+2\cdot 3\cdot 3+…+(2n-1)\cdot 2n\cdot 3$ $\to 3B=1\cdot 2\cdot (3-0)+2\cdot 3\cdot (4-1)+…+(2n-1)\cdot 2n\cdot (2n+1-(2n-2))$ $\to 3B=-0\cdot 1\cdot 2+1\cdot 2\cdot 3-1\cdot 2\cdot 3+2\cdot 3\cdot 4-….-(2n-2)\cdot (2n-1)\cdot 2n+(2n-1)\cdot 2n\cdot (2n+1)$ $\to 3B=(2n-1)\cdot 2n\cdot (2n+1)$ $\to B=\dfrac13\cdot (2n-1)\cdot 2n\cdot (2n+1)$ Lại có: $C=1+2+3+…+2n$ $\to C=\dfrac{2n\cdot (2n+1)}{2}=n(2n+1)$ $\to A=B+C=\dfrac13\cdot (2n-1)\cdot 2n\cdot (2n+1)+n(2n+1)$ Bình luận
Đáp án: $A=\dfrac13\cdot (2n-1)\cdot 2n\cdot (2n+1)+n(2n+1)$
Giải thích các bước giải:
Ta có:
$A=1^2+2^2+3^2+…+(2n-1)^2+(2n)^2$
$\to A=1\cdot 1+2\cdot 2+3\cdot 3+…+(2n-1)\cdot (2n-1)+(2n)\cdot (2n)$
$\to A=1\cdot (0+1)+2\cdot (1+1)+3\cdot(1+2)+…+(2n-1)\cdot (2n-2+1)+(2n)\cdot (2n-1+1)$
$\to A=0\cdot 1+1+1\cdot 2+2+2\cdot 3+3+…+(2n-1)\cdot (2n-1)+(2n-1)+(2n-1)\cdot 2n+2n$
$\to A=(0\cdot 1+1\cdot 2+2\cdot 3+…+(2n-1)\cdot 2n)+(1+2+3+…+2n)$
Lại có:
$B=0\cdot 1+1\cdot 2+2\cdot 3+…+(2n-1)\cdot 2n$
$\to B=1\cdot 2+2\cdot 3+…+(2n-1)\cdot 2n$
$\to 3B=1\cdot 2\cdot 3+2\cdot 3\cdot 3+…+(2n-1)\cdot 2n\cdot 3$
$\to 3B=1\cdot 2\cdot (3-0)+2\cdot 3\cdot (4-1)+…+(2n-1)\cdot 2n\cdot (2n+1-(2n-2))$
$\to 3B=-0\cdot 1\cdot 2+1\cdot 2\cdot 3-1\cdot 2\cdot 3+2\cdot 3\cdot 4-….-(2n-2)\cdot (2n-1)\cdot 2n+(2n-1)\cdot 2n\cdot (2n+1)$
$\to 3B=(2n-1)\cdot 2n\cdot (2n+1)$
$\to B=\dfrac13\cdot (2n-1)\cdot 2n\cdot (2n+1)$
Lại có:
$C=1+2+3+…+2n$
$\to C=\dfrac{2n\cdot (2n+1)}{2}=n(2n+1)$
$\to A=B+C=\dfrac13\cdot (2n-1)\cdot 2n\cdot (2n+1)+n(2n+1)$