Tính a) A=4+ $2^{2}$ + $2^{3}$ + $2^{4}$ +….+ $2^{20}$ b) Tìm x biết: (x+1)+(x+2)+…+(x+100)=5750 22/07/2021 Bởi Gianna Tính a) A=4+ $2^{2}$ + $2^{3}$ + $2^{4}$ +….+ $2^{20}$ b) Tìm x biết: (x+1)+(x+2)+…+(x+100)=5750
a, $A=4+2^2+2^3+…+2^{20}$ $⇒2A=2^3+2^3+2^4+…+2^{21}$ $⇒2A-A=(2+2)+2^{21}$ $⇒A=2^{21}+4$ b, $(x+1)+(x+2)+…+(x+100)=5750$ $⇒100x+(1+2+…+100)=5750$ $⇒100x+5050=5750$ $⇒100x=700$ $⇒x=7$ Bình luận
Đáp án: Giải thích các bước giải: $$A=4+2^2+2^3+2^4+…+2^{20}\\2A=8+2^3+2^4+…+2^{21}\\\Leftrightarrow 2A-A=2^{21}+4=A=2097152$$ b) $$(x+1)+(x+2)+…+(x+100)=5750\\\Leftrightarrow 100x+1+2+…+100=5750\\\Leftrightarrow 100x+\frac{100(100+1)}{2}=5750\\\Leftrightarrow 100x+5050=5750\\\Leftrightarrow 100x=700\\\Leftrightarrow x=7$$ Bình luận
a, $A=4+2^2+2^3+…+2^{20}$
$⇒2A=2^3+2^3+2^4+…+2^{21}$
$⇒2A-A=(2+2)+2^{21}$
$⇒A=2^{21}+4$
b, $(x+1)+(x+2)+…+(x+100)=5750$
$⇒100x+(1+2+…+100)=5750$
$⇒100x+5050=5750$
$⇒100x=700$
$⇒x=7$
Đáp án:
Giải thích các bước giải: $$A=4+2^2+2^3+2^4+…+2^{20}\\2A=8+2^3+2^4+…+2^{21}\\\Leftrightarrow 2A-A=2^{21}+4=A=2097152$$
b) $$(x+1)+(x+2)+…+(x+100)=5750\\\Leftrightarrow 100x+1+2+…+100=5750\\\Leftrightarrow 100x+\frac{100(100+1)}{2}=5750\\\Leftrightarrow 100x+5050=5750\\\Leftrightarrow 100x=700\\\Leftrightarrow x=7$$