Tính A=cos120°+3sin0° ______________ 3tan45°-7cot60° 09/11/2021 Bởi Maya Tính A=cos120°+3sin0° ______________ 3tan45°-7cot60°
Ta có: `A={cos120°+3sin0°}/{3tan45°-7cot60°}` $A=\dfrac{\dfrac{-1}{ 2 }+ 3. 0 }{3 . 1- 7 . \dfrac{1}{\sqrt{3}}}$ $A=\dfrac{\dfrac{-1}{2}}{\dfrac{3\sqrt{3}-7}{\sqrt{3}}}$ $A=\dfrac{-\sqrt{3}}{2(3\sqrt{3}-7)}$ Bình luận
+ $A = cos120° + 3sin0°$ $= -\frac{1}{2} + 3.0$ $= – \frac {1}{2}$. + $B = 3tan45° – 7cot60°$ $= 3.1 – 7.\frac{1}{\sqrt {3}}$ $= 3 – \frac {7\sqrt {3}}{3}$ $= \frac{9 – 7 \sqrt {3}}{3}$. Bình luận
Ta có:
`A={cos120°+3sin0°}/{3tan45°-7cot60°}`
$A=\dfrac{\dfrac{-1}{ 2 }+ 3. 0 }{3 . 1- 7 . \dfrac{1}{\sqrt{3}}}$
$A=\dfrac{\dfrac{-1}{2}}{\dfrac{3\sqrt{3}-7}{\sqrt{3}}}$
$A=\dfrac{-\sqrt{3}}{2(3\sqrt{3}-7)}$
+ $A = cos120° + 3sin0°$
$= -\frac{1}{2} + 3.0$
$= – \frac {1}{2}$.
+ $B = 3tan45° – 7cot60°$
$= 3.1 – 7.\frac{1}{\sqrt {3}}$
$= 3 – \frac {7\sqrt {3}}{3}$
$= \frac{9 – 7 \sqrt {3}}{3}$.