Tính:
a, ($\frac{1}{x+2}$+ $\frac{1}{x-2}$): $\frac{x}{x^{2}-4}$
b, $\frac{x}{1-x^{2}}$: ($\frac{1}{1-x}$ – $\frac{1}{1+x}$)
Tính:
a, ($\frac{1}{x+2}$+ $\frac{1}{x-2}$): $\frac{x}{x^{2}-4}$
b, $\frac{x}{1-x^{2}}$: ($\frac{1}{1-x}$ – $\frac{1}{1+x}$)
`a)(1/(x+2)+1/(x-2)):x/(x^2-4)`
`=(x-2+x+2)/((x-2)(x+2)):x/((x-2)(x+2))`
`=(2x)/((x-2)(x+2)) . ((x-2)(x+2))/x`
`=2`
`b)x/(1-x^2):(1/(1-x)-1/(1+x))`
`=(-x)/((x-1)(x+1)):((-1)/(x-1)+(-1)/(x+1))`
`=(-x)/((x-1)(x+1)):(-x-1-x+1)/((x-1)(x+1))`
`=(-x)/((x-1)(x+1)) . ((x-1)(x+1))/(-2x)`
`=1/2`
a, `(1/(x+2)+1/(x-2) ):x/(x²-4) ` (ĐK:x khác `2,-2`)
`=((x-2)/[(x+2).(x-2)]+(x+2)/[(x+2).(x-2)]):x/[(x+2).(x-2)]`
`=(x-2+x+2)/[(x+2).(x-2)].[(x+2).(x-2)]/x`
`=2x/x`
`=2`
b, `x/(1-x²):(1/(1-x)-1/(1+x)) ` (ĐK: x khác `1,-1`)
`=x/[(1-x).(1+x)]:((1+x)/[(1-x).(1+x)]+(1-x)/[(1-x).(1+x)])`
`=x/[(1-x).(1+x)].[(1-x).(1+x)]/2`
`=x/2`