TÍNH A)$\frac{1}{3^2}$-$\frac{1}{3^3}$ +…+$\frac{1}{3mũ50}$ -$\frac{1}{3mũ51}$ B) $\frac{1}{1.2.3}$ +$\frac{1}{2.3.4}$ +…+$\frac{1}{a.(a+1).(a+2)

TÍNH
A)$\frac{1}{3^2}$-$\frac{1}{3^3}$ +…+$\frac{1}{3mũ50}$ -$\frac{1}{3mũ51}$
B) $\frac{1}{1.2.3}$ +$\frac{1}{2.3.4}$ +…+$\frac{1}{a.(a+1).(a+2)}$

0 bình luận về “TÍNH A)$\frac{1}{3^2}$-$\frac{1}{3^3}$ +…+$\frac{1}{3mũ50}$ -$\frac{1}{3mũ51}$ B) $\frac{1}{1.2.3}$ +$\frac{1}{2.3.4}$ +…+$\frac{1}{a.(a+1).(a+2)”

  1. Đáp án:

     `dowmnarrow`

    Giải thích các bước giải:

    `A=1/3^2-1/3^3+……+1/3^50-1/3^51`

    `3A=1/3-1/3^2+…..+1/3^49-1/3^50`

    `=>3A+A=4A=1/3-1/3^51`

    `=>A=(1/3-1/3^51)/4`

    `B=1/(1.2.3)+1/(2.3.4)+……..+1/(a(a+1)(a+2))`

    `=>2A=2/(1.2.3)+2/(2.3.4)+……..+2/(a(a+1)(a+2))`

    `=>2A=1/(1.2)-1/(2.3)+1/(2.3)-1/(3.4)+…….+1/(a.(a+1))-1/(a(a+2))`

    `=>2A=1/2-1/(a^2+2a)`

    `=>A=(1/2-1/(a^2+2a))/2`

    Bình luận
  2. a)

              A=$\frac{1}{3^2}$  – $\frac{1}{3^3}$ + … + $\frac{1}{3^{50}}$ – $\frac{1}{3^{51}}$

      =>  3A = $\frac{1}{3}$ – $\frac{1}{3^2}$ + $\frac{1}{3^3}$ – …+ $\frac{1}{3^{49}}$ – $\frac{1}{3^{50}}$ 

    => 3A + A= ($\frac{1}{3^2}$  – $\frac{1}{3^3}$ + … + $\frac{1}{3^{50}}$ – $\frac{1}{3^{51}}$) + ($\frac{1}{3}$ – $\frac{1}{3^2}$ + $\frac{1}{3^3}$ – …+ $\frac{1}{3^{49}}$ – $\frac{1}{3^{50}}$ )

      Rút gọn đc:

         4A= $\frac{1}{3}$ – $\frac{1}{3^{51}}$ 

         4A= $\frac{3^{51}}{3^{52}}$ – $\frac{3}{3^{52}}$   (Quy đồng mẫu)

         4A= $\frac{3^{51} – 3}{3^{52}}$ 

      =>A= $\frac{3^{51} – 3}{3^{52}}$ . $\frac{1}{4}$   

           A= $\frac{3^{51} – 3}{3^{52} .4}$ 

    b)    B=$\frac{1}{1.2.3}$ + $\frac{1}{2.3.4}$ +…+ $\frac{1}{a.(a+1).(a+2)}$ 

     =>2B= $\frac{2}{1.2.3}$ + $\frac{2}{2.3.4}$ +…+ $\frac{2}{a.(a+1).(a+2)}$ 

     =>2B=($\frac{1}{1.2}$ – $\frac{1}{2.3}$) + ($\frac{1}{2.3}$ – $\frac{1}{3.4}$) + … + ($\frac{1}{a.(a+1)}$ – $\frac{1}{(a+1).(a+2)}$) 

        Rút gọn đc:

        2B=$\frac{1}{2}$ – $\frac{1}{(a+1).(a+2)}$

        2B=$\frac{(a+1).(a+2) – 2}{2.(a+1).(a+2)}$

    =>B=$\frac{(a+1).(a+2) – 2}{4.(a+1).(a+2)}$

    Bình luận

Viết một bình luận