Tính: A = $\frac{1}{5}$ + $\frac{1}{5^{2}}$ + $\frac{1}{5^{3}}$ + … + $\frac{1}{5^{100}}$

Tính:
A = $\frac{1}{5}$ + $\frac{1}{5^{2}}$ + $\frac{1}{5^{3}}$ + … + $\frac{1}{5^{100}}$

0 bình luận về “Tính: A = $\frac{1}{5}$ + $\frac{1}{5^{2}}$ + $\frac{1}{5^{3}}$ + … + $\frac{1}{5^{100}}$”

  1. Đáp án :

    `A=(1-1/5^(100))/4`

    Giải thích các bước giải :

    `A=1/5+1/5^2+1/5^3+…+1/5^(100)`
    `=>5A=1+1/5+1/5^2+…+1/5^(99)`
    `=>5A-A=1+1/5+1/5^2+…+1/5^(99)-1/5-1/5^2-1/5^3-…-1/5^(100)`
    `=>4A=1-1/5^(100)`
    `=>A=(1-1/5^(100))/4`
    Vậy : `A=(1-1/5^(100))/4`

    Bình luận
  2. Đáp án:

    `↓↓↓`  

    Giải thích các bước giải:

    `A = 1/5 + 1/5^2 + 1/5^3 + …. + 1/5^{100}`

    `-> 5A = 1 + 1/5 + 1/5^2 + …. + 1/5^{99}`

    `-> 5A – A = (1 + 1/5 + 1/5^2 + …. + 1/5^{99}) – (1/5 + 1/5^2 + 1/5^3 + …. + 1/5^{100})`

    `-> 4A = 1 – 1/5^{100}`

    `-> A = (1 – 1/5^{100})/4`

    `-> A = 1/4`

     

    Bình luận

Viết một bình luận