Tính. `a, sqrt(9-3sqrt(5)` `-sqrt(9+3sqrt(5)` `b, (sqrt(10) – sqrt(2))“sqrt(4+sqrt(6-2sqrt(5))` Em cảm ơn trước ạ!

Tính.
`a, sqrt(9-3sqrt(5)` `-sqrt(9+3sqrt(5)`
`b, (sqrt(10) – sqrt(2))“sqrt(4+sqrt(6-2sqrt(5))`
Em cảm ơn trước ạ!

0 bình luận về “Tính. `a, sqrt(9-3sqrt(5)` `-sqrt(9+3sqrt(5)` `b, (sqrt(10) – sqrt(2))“sqrt(4+sqrt(6-2sqrt(5))` Em cảm ơn trước ạ!”

  1. a,

    $A=\sqrt{9-3\sqrt5}-\sqrt{9+3\sqrt5}$

    $A^2=9-3\sqrt5+9+3\sqrt5-2\sqrt{(9-3\sqrt5)(9+3\sqrt5)}$

    $=18-2\sqrt{81-45}$

    $=18-2.6$

    $=6$

    $81>45\to \sqrt{81}>\sqrt{45}\to 9>3\sqrt5>9-3\sqrt5>0$

    Ta có: $-3\sqrt5<0<3\sqrt5$

    $\to 9-3\sqrt5<9+3\sqrt5$

    Khai phương 2 vế:

    $\sqrt{9-3\sqrt5}<\sqrt{9+3\sqrt5}$

    $\to A<0$

    Vậy $A=-\sqrt6$

    b,

    $(\sqrt{10}-\sqrt2).\sqrt{4+\sqrt{(\sqrt5-1)^2}}$

    $=(\sqrt{10}-\sqrt2).\sqrt{4+\sqrt5-1}$

    $=(\sqrt{10}-\sqrt2).\sqrt{3+\sqrt5}$

    $=(\sqrt5-1).\sqrt2.\sqrt{3+\sqrt5}$

    $=(\sqrt5-1).\sqrt{6+2\sqrt5}$

    $=(\sqrt5-1).\sqrt{(\sqrt5+1)^2}$

    $=(\sqrt5-1)(\sqrt5+1)$

    $=5-1$

    $=4$

    Bình luận
  2. Đáp án:

    `a)\sqrt{9-3sqrt5}-sqrt{9+3sqrt5}`

    `=sqrt{(18-6sqrt5)/2}-sqrt{(18+6sqrt5)/2}`

    `=sqrt{(15-2.sqrt{45}+3)/2}-sqrt{(15+2sqrt{45}+3)/2}`

    `=sqrt{(sqrt{15}-sqrt3)^2/2}-sqrt{(sqrt{15}+sqrt3)^2/2}`

    `=(sqrt{15}-sqrt3)/2-(sqrt{15}+sqrt3)/sqrt2`

    `=(sqrt{15}-sqrt3-sqrt{15}-sqrt3)/sqrt2`

    `=(-2sqrt3)/sqrt2`

    `=-sqrt6`

    `b)(sqrt{10}-sqrt2)sqrt{4+sqrt{6-2sqrt5}}`

    `=sqrt2(sqrt5-1)sqrt{4+sqrt{5-2sqrt5+1}}`

    `=sqrt2(sqrt5-1)sqrt{4+sqrt{(sqrt5-1)^2}}`

    `=sqrt2(sqrt5-1)sqrt{4+sqrt5-1}`

    `=sqrt2(sqrt5-1)sqrt{3+sqrt5}`

    `=(sqrt5-1)sqrt{2.3+2sqrt5}`

    `=(sqrt5-1)sqrt{6+2sqrt5}`

    `=(sqrt5-1)sqrt{5+2sqrt5+1}`

    `=(sqrt5-1)sqrt{(sqrt5+1)^2}`

    `=(sqrt5-1)(sqrt5+1)`

    `=(sqrt5)^2-1`

    `=5-1=4`.

    Bình luận

Viết một bình luận