Tính C = -$\frac{1}{3}$ + $\frac{1}{3}$ -$\frac{1}{3}$ + $\frac{1}{3^2}$ – $\frac{1}{3^3}$ + … + $\frac{1}{3^98}$ – $\frac{1}{3^99}$

Tính C = -$\frac{1}{3}$ + $\frac{1}{3}$ -$\frac{1}{3}$ + $\frac{1}{3^2}$ – $\frac{1}{3^3}$ + … + $\frac{1}{3^98}$ – $\frac{1}{3^99}$

0 bình luận về “Tính C = -$\frac{1}{3}$ + $\frac{1}{3}$ -$\frac{1}{3}$ + $\frac{1}{3^2}$ – $\frac{1}{3^3}$ + … + $\frac{1}{3^98}$ – $\frac{1}{3^99}$”

  1. `C = -1/3 + 1/3^2 – 1/3^3 + …..+ 1/3^98 – 1/3^99`

    `3C = -1 + 1/3 – 1/3^2 + 1/3^3 – …..- 1/3^98 +1/3^99`

    `3C+C = (-1 + 1/3 – 1/3^2 + 1/3^3 – …..- 1/3^98 +1/3^99) + ( -1/3 + 1/3^2 – 1/3^3 + …..+ 1/3^98 – 1/3^99)`

    `4C = -1 – 1/3^99`

    `C = (-1 – 1/3^99)/4`

     

    Bình luận
  2. Đáp án+Giải thích các bước giải:

    $C=-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{3}+….+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}$

    $C=-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+….+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}$

    Đặt $3C=-1+\dfrac{1}{3}-\dfrac{1}{3^2}+….+\dfrac{1}{3^{97}}-\dfrac{1}{3^{98}}$

    $3C+C=-1-\dfrac{1}{3^{99}}$

    $4C=-1-\dfrac{1}{3^{99}}$

    $C=\dfrac{-1-\dfrac{1}{3^{99}}}{4}$ 

    Bình luận

Viết một bình luận