Tính các giới hạn sau : a) lim ($\frac{1}{1.3}$+$\frac{1}{2.4}$+…+$\frac{1}{n(n+2)}$ ) b) lim (1- $\frac{1}{2^{2}}$)(1- $\frac{1}{3^{2}}$ )…(1- $

Tính các giới hạn sau :
a) lim ($\frac{1}{1.3}$+$\frac{1}{2.4}$+…+$\frac{1}{n(n+2)}$ )
b) lim (1- $\frac{1}{2^{2}}$)(1- $\frac{1}{3^{2}}$ )…(1- $\frac{1}{n^{2}}$)
c) lim ( $\frac{1}{1.2}$+$\frac{1}{2.3}$+…+$\frac{1}{n(n+1)}$ )
d) lim $\frac{1+2+…+n}{n^2+3n}$
e) lim $\frac{1+2+2^2+…+2^n}{1+3+3^2+…+3^n}$

0 bình luận về “Tính các giới hạn sau : a) lim ($\frac{1}{1.3}$+$\frac{1}{2.4}$+…+$\frac{1}{n(n+2)}$ ) b) lim (1- $\frac{1}{2^{2}}$)(1- $\frac{1}{3^{2}}$ )…(1- $”

  1. Giải thích các bước giải:

    Ta có:

    \(\begin{array}{l}
    a,\\
    \lim \left( {\frac{1}{{1.3}} + \frac{1}{{2.4}} + \frac{1}{{3.5}} + …. + \frac{1}{{n\left( {n + 2} \right)}}} \right)\\
     = \lim \left[ {\frac{1}{2}\left( {\frac{{3 – 1}}{{1.3}} + \frac{{4 – 2}}{{2.4}} + \frac{{5 – 3}}{{3.5}} + …. + \frac{{\left( {n + 2} \right) – n}}{{n\left( {n + 2} \right)}}} \right)} \right]\\
     = \lim \left[ {\frac{1}{2}.\left( {1 – \frac{1}{3} + \frac{1}{2} – \frac{1}{4} + \frac{1}{3} – \frac{1}{5} + ….. + \frac{1}{n} – \frac{1}{{n + 2}}} \right)} \right]\\
     = \lim \left[ {\frac{1}{2}.\left( {\left( {1 + \frac{1}{2} + \frac{1}{3} + …. + \frac{1}{n}} \right) – \left( {\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + …. + \frac{1}{{n + 2}}} \right)} \right)} \right]\\
     = \lim \left[ {\frac{1}{2}.\left( {1 + \frac{1}{2} – \frac{1}{{n + 1}} – \frac{1}{{n + 2}}} \right)} \right]\\
     = \lim \left[ {\frac{1}{2}.\left( {\frac{3}{2} – \frac{1}{{n + 1}} – \frac{1}{{n + 2}}} \right)} \right] = \frac{1}{2}.\frac{3}{2} = \frac{3}{4}
    \end{array}\)

    \(\begin{array}{l}
    b,\\
    \lim \left( {1 – \frac{1}{{{2^2}}}} \right)\left( {1 – \frac{1}{{{3^2}}}} \right)\left( {1 – \frac{1}{{{4^2}}}} \right)….\left( {1 – \frac{1}{{{n^2}}}} \right)\\
     = \lim \left( {\frac{{{2^2} – 1}}{{{2^2}}}.\frac{{{3^2} – 1}}{{{3^2}}}.\frac{{{4^2} – 1}}{{{4^2}}}…..\frac{{{n^2} – 1}}{{{n^2}}}} \right)\\
     = \lim \left( {\frac{{1.3}}{{{2^2}}}.\frac{{2.4}}{{{3^2}}}.\frac{{3.5}}{{{4^2}}}…..\frac{{\left( {n – 1} \right)\left( {n + 1} \right)}}{{{n^2}}}} \right)\\
     = \lim \left( {\frac{{\left( {1.2.3…..\left( {n – 1} \right)} \right).\left( {3.4.5….\left( {n + 1} \right)} \right)}}{{\left( {2.3.4…..n} \right)\left( {2.3.4…..n} \right)}}} \right)\\
     = \lim \frac{{1.\left( {n + 1} \right)}}{{n.2}} = \lim \frac{{n + 1}}{{2n}} = \frac{1}{2}\\
    d,\\
    \lim \frac{{1 + 2 + 3 + … + n}}{{{n^2} + 3n}}\\
     = \lim \frac{{\frac{{n\left( {n + 1} \right)}}{2}}}{{{n^2} + 3n}}\\
     = \lim \frac{{{n^2} + n}}{{2{n^2} + 6n}}\\
     = \lim \frac{{1 + \frac{1}{n}}}{{2 + \frac{6}{n}}} = \frac{1}{2}\\
    e,\\
    \lim \frac{{1 + 2 + {2^2} + …. + {2^n}}}{{1 + 3 + {3^2} + ….. + {3^n}}}\\
     = \lim \frac{{\frac{{{2^{n + 1}} – 1}}{{2 – 1}}}}{{\frac{{{3^{n + 1}} – 1}}{{3 – 1}}}} = \lim \frac{{{2^{n + 1}} – 1}}{{\frac{{{3^{n + 1}} – 1}}{2}}} = \lim \frac{{{2^{n + 2}} – 2}}{{{3^{n + 1}} – 1}} = \lim \frac{{2.{{\left( {\frac{2}{3}} \right)}^n} – \frac{2}{{{3^{n + 1}}}}}}{{1 – \frac{1}{{{3^{n + 1}}}}}} = 0
    \end{array}\)

    Bình luận

Viết một bình luận