Tính đạo hàm
1) y=(x^2+3x)√4-x^2. 3)y=xsinx+cosx
2)y=sin3x+cos6x
3)gbptrình y’ { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " Tính đạo hàm
1) y=(x^2+3x)√4-x^2. 3)y=xsinx+cosx
2)y=sin3x+cos6x
3)gbptrình y'
Đáp án:
$\begin{array}{l}
1)y = \left( {{x^2} + 3x} \right)\sqrt {4 – {x^2}} \\
\Leftrightarrow y’ = \left( {2x + 3} \right).\sqrt {4 – {x^2}} + \left( {{x^2} + 3x} \right).\dfrac{{ – 2x}}{{2\sqrt {4 – {x^2}} }}\\
= \left( {2x + 3} \right).\sqrt {4 – {x^2}} – \dfrac{{x\left( {{x^2} + 3x} \right)}}{{\sqrt {4 – {x^2}} }}\\
= \dfrac{{\left( {2x + 3} \right)\left( {4 – {x^2}} \right) – {x^3} – 3{x^2}}}{{\sqrt {4 – {x^2}} }}\\
= \dfrac{{8x – 2{x^3} + 12 – 3{x^2} – {x^3} – 3{x^2}}}{{\sqrt {4 – {x^2}} }}\\
= \dfrac{{ – 3{x^3} – 6{x^2} + 8x + 12}}{{\sqrt {4 – {x^2}} }}\\
2)y = \sin 3x + \cos 6x\\
\Leftrightarrow y’ = 3.\cos 3x – 6\sin 6x\\
3)y = x.\sin x + \cos x\\
\Leftrightarrow y’ = \sin x + x.\cos x – \sin x\\
= x.\cos x\\
3)y = {x^3} – 5{x^2} + 7x + 2020\\
\Leftrightarrow y’ = 3{x^2} – 10x + 7\\
Khi:y’ \le 0\\
\Leftrightarrow 3{x^2} – 10x + 7 \le 0\\
\Leftrightarrow \left( {3x – 7} \right)\left( {x – 1} \right) \le 0\\
\Leftrightarrow 1 \le x \le \dfrac{7}{3}\\
Vậy\,1 \le x \le \dfrac{7}{3}
\end{array}$