Tính đạo hàm của: $a, y=3x^4-2x^3+5x+7$ $b, y=\sqrt[3]{x}+\sin x$ `————————-` 25/10/2021 Bởi Josie Tính đạo hàm của: $a, y=3x^4-2x^3+5x+7$ $b, y=\sqrt[3]{x}+\sin x$ `————————-`
a, $y’=(3x^4)’-(2x^3)’+(5x)’+(7)’$ $=12x^3-6x^2+5$ b, $y=\sqrt[3]{x}+\sin x=x^{\frac{1}{3}}+\sin x$ $y’=\Big(x^{\frac{1}{3}}\Big)’+(\sin x)’$ $=\dfrac{1}{3}x^{\frac{-2}{3}}+\cos x$ $=\dfrac{1}{3}. \dfrac{1}{x^{\frac{2}{3}}}+\cos x$ $=\dfrac{1}{3}.\dfrac{1}{\sqrt[3]{x}^2}+\cos x$ $=\dfrac{1}{3\sqrt[3]{x}^2}+\cos x$ Bình luận
a, $y=3x^4-2x^3+5x+7$$\to y’=(3x^4-2x^3+5x+7)’$$=(3x^4)’-(2x^3)’+(5x)’+(7)’$$=3.4x^3-2.3x^2+5.1.x^0+0$$=12x^3-6x^2+5$$\\$b, $y=\sqrt[3]{x}+sinx$$\to y=x^{\frac13}+sinx$$\to y’=(x^{\frac13}+sinx)’$ $=(x^{\frac13})’+(sinx)’$ $=\dfrac13x^{-\frac23}+cosx$ Bình luận
a,
$y’=(3x^4)’-(2x^3)’+(5x)’+(7)’$
$=12x^3-6x^2+5$
b,
$y=\sqrt[3]{x}+\sin x=x^{\frac{1}{3}}+\sin x$
$y’=\Big(x^{\frac{1}{3}}\Big)’+(\sin x)’$
$=\dfrac{1}{3}x^{\frac{-2}{3}}+\cos x$
$=\dfrac{1}{3}. \dfrac{1}{x^{\frac{2}{3}}}+\cos x$
$=\dfrac{1}{3}.\dfrac{1}{\sqrt[3]{x}^2}+\cos x$
$=\dfrac{1}{3\sqrt[3]{x}^2}+\cos x$
a,
$y=3x^4-2x^3+5x+7$
$\to y’=(3x^4-2x^3+5x+7)’$
$=(3x^4)’-(2x^3)’+(5x)’+(7)’$
$=3.4x^3-2.3x^2+5.1.x^0+0$
$=12x^3-6x^2+5$
$\\$
b,
$y=\sqrt[3]{x}+sinx$
$\to y=x^{\frac13}+sinx$
$\to y’=(x^{\frac13}+sinx)’$
$=(x^{\frac13})’+(sinx)’$
$=\dfrac13x^{-\frac23}+cosx$