tính đạo hàm hs sau 1) y=tan^4 (pi/6+2x) 2) y=cot^4 (5x-1)

tính đạo hàm hs sau
1) y=tan^4 (pi/6+2x)
2) y=cot^4 (5x-1)

0 bình luận về “tính đạo hàm hs sau 1) y=tan^4 (pi/6+2x) 2) y=cot^4 (5x-1)”

  1. 1.

    $y’=4\tan^3\Big(\dfrac{\pi}{6}+2x\Big).\Big[ \tan\Big(\dfrac{\pi}{6}+2x\Big)\Big]’$

    $=\dfrac{\tan^3\Big(\dfrac{\pi}{6}+2x\Big)}{2\cos^2\Big(2x+\dfrac{\pi}{6}\Big)}$

    2.

    $y’=4\cot^3(5x-1).[\cot(5x-1)]’$

    $=\dfrac{-5\cot^3(5x-1)}{4\sin^2(5x-1)}$

    Bình luận
  2. Đáp án: a, $=8\frac{\sin ^{3}(\frac{\pi }{6}+2x)}{\cos ^{5}(\frac{\pi }{6}+2x)}$
                 b, $=20\frac{\cos ^{3}(5x-1)}{\sin ^{5}(5x-1)}$

     

    Giải thích các bước giải:

    a)$ y’=4\tan ^{3}(\frac{\pi }{6}+2x)\tan ‘(\frac{\pi }{6}+2x)$
    $=4\tan ^{3}(\frac{\pi }{6}+2x)(\frac{\pi }{6}+2x)’\frac{1}{\cos ^{2}(\frac{\pi }{6}+2x)}$
    $=8\frac{\sin ^{3}(\frac{\pi }{6}+2x)}{\cos ^{5}(\frac{\pi }{6}+2x)}$
    b)
    $y’=4\cot ^{3}(5x-1)\cot ‘(5x-1)$
    $=4\cot ^{3}(5x-1)(5x-1)’\frac{1}{\sin ^{2}(5x-1)}$
    $=20\frac{\cos ^{3}(5x-1)}{\sin ^{5}(5x-1)}$

    Bình luận

Viết một bình luận