tính đạo hàm hs sau 1) y=tan^4 (pi/6+2x) 2) y=cot^4 (5x-1) 05/11/2021 Bởi Alaia tính đạo hàm hs sau 1) y=tan^4 (pi/6+2x) 2) y=cot^4 (5x-1)
1. $y’=4\tan^3\Big(\dfrac{\pi}{6}+2x\Big).\Big[ \tan\Big(\dfrac{\pi}{6}+2x\Big)\Big]’$ $=\dfrac{\tan^3\Big(\dfrac{\pi}{6}+2x\Big)}{2\cos^2\Big(2x+\dfrac{\pi}{6}\Big)}$ 2. $y’=4\cot^3(5x-1).[\cot(5x-1)]’$ $=\dfrac{-5\cot^3(5x-1)}{4\sin^2(5x-1)}$ Bình luận
Đáp án: a, $=8\frac{\sin ^{3}(\frac{\pi }{6}+2x)}{\cos ^{5}(\frac{\pi }{6}+2x)}$ b, $=20\frac{\cos ^{3}(5x-1)}{\sin ^{5}(5x-1)}$ Giải thích các bước giải: a)$ y’=4\tan ^{3}(\frac{\pi }{6}+2x)\tan ‘(\frac{\pi }{6}+2x)$$=4\tan ^{3}(\frac{\pi }{6}+2x)(\frac{\pi }{6}+2x)’\frac{1}{\cos ^{2}(\frac{\pi }{6}+2x)}$$=8\frac{\sin ^{3}(\frac{\pi }{6}+2x)}{\cos ^{5}(\frac{\pi }{6}+2x)}$b)$y’=4\cot ^{3}(5x-1)\cot ‘(5x-1)$$=4\cot ^{3}(5x-1)(5x-1)’\frac{1}{\sin ^{2}(5x-1)}$$=20\frac{\cos ^{3}(5x-1)}{\sin ^{5}(5x-1)}$ Bình luận
1.
$y’=4\tan^3\Big(\dfrac{\pi}{6}+2x\Big).\Big[ \tan\Big(\dfrac{\pi}{6}+2x\Big)\Big]’$
$=\dfrac{\tan^3\Big(\dfrac{\pi}{6}+2x\Big)}{2\cos^2\Big(2x+\dfrac{\pi}{6}\Big)}$
2.
$y’=4\cot^3(5x-1).[\cot(5x-1)]’$
$=\dfrac{-5\cot^3(5x-1)}{4\sin^2(5x-1)}$
Đáp án: a, $=8\frac{\sin ^{3}(\frac{\pi }{6}+2x)}{\cos ^{5}(\frac{\pi }{6}+2x)}$
b, $=20\frac{\cos ^{3}(5x-1)}{\sin ^{5}(5x-1)}$
Giải thích các bước giải:
a)$ y’=4\tan ^{3}(\frac{\pi }{6}+2x)\tan ‘(\frac{\pi }{6}+2x)$
$=4\tan ^{3}(\frac{\pi }{6}+2x)(\frac{\pi }{6}+2x)’\frac{1}{\cos ^{2}(\frac{\pi }{6}+2x)}$
$=8\frac{\sin ^{3}(\frac{\pi }{6}+2x)}{\cos ^{5}(\frac{\pi }{6}+2x)}$
b)
$y’=4\cot ^{3}(5x-1)\cot ‘(5x-1)$
$=4\cot ^{3}(5x-1)(5x-1)’\frac{1}{\sin ^{2}(5x-1)}$
$=20\frac{\cos ^{3}(5x-1)}{\sin ^{5}(5x-1)}$