Tính E = sin π/5 + sin 2π/5 + … + Sin 9π/5

Tính E = sin π/5 + sin 2π/5 + … + Sin 9π/5

0 bình luận về “Tính E = sin π/5 + sin 2π/5 + … + Sin 9π/5”

  1. $E= sin(\frac{\pi}{5})+sin(\frac{2\pi}{5})+ sin(\frac{3\pi}{5})+ sin(\frac{4\pi}{5})+ sin\pi+ sin(\pi+ \frac{\pi}{5})+ sin(\pi+\frac{2\pi}{5})+ sin(\pi+\frac{3\pi}{5})+ sin(\pi+\frac{9\pi}{5})$ 

    Do $sin(\pi+\alpha)= -sin\alpha$

    $\Rightarrow E= sin\pi= 0$

    Bình luận
  2. Đáp án:

     $E=0$

    Giải thích các bước giải:

     $E=\sin \dfrac{\pi}{5}+\sin \dfrac{2\pi}{5}+…+\sin \dfrac{9\pi}{5}\\
    =\left ( \sin\dfrac{\pi}{5}+\sin\dfrac{9\pi}{5} \right )+\left ( \sin\dfrac{2\pi}{5}+\sin\dfrac{8\pi}{5} \right )+…+\left ( \sin\dfrac{4\pi}{5}+\sin\dfrac{6\pi}{5} \right )+\sin\dfrac{5\pi}{5}\\
    =0+0+…+0+\sin \pi\\
    =0$

    Bình luận

Viết một bình luận