tính $\frac{1}{3}$ $\frac{1}{3^2}$ + $\frac{1}{3^3}$ +…+ $\frac{1}{3^100}$ 22/08/2021 Bởi Alice tính $\frac{1}{3}$ $\frac{1}{3^2}$ + $\frac{1}{3^3}$ +…+ $\frac{1}{3^100}$
Đặt `A= 1/3 + 1/3^2 + 1/3^3 +…+1/3^100` `1/3A= 1/3( 1/3 + 1/3^2 + 1/3^3 +…+1/3^100)` `1/3A = 1/3^2 + 1/3^3 + 1/3^4 +…+1/3^101` `A- 1/3 A= 1/3 + 1/3^2 + 1/3^3 +…+1/3^100- 1/3^2 – 1/3^3- 1/3^4 -…-1/3^101` `2/3 A= 1/3 – 1/3^101` `A= (1/3 – 1/3^101) : 2/3` `A= (1/3 – 1/3^101) . 3/2` `A= 1/2 – 1/(3^100 .2)` Vậy `A= 1/2 – 1/(3^100 .2)` Bình luận
Đặt `A= 1/3 + 1/3^2 + 1/3^3 +…+1/3^100`
`1/3A= 1/3( 1/3 + 1/3^2 + 1/3^3 +…+1/3^100)`
`1/3A = 1/3^2 + 1/3^3 + 1/3^4 +…+1/3^101`
`A- 1/3 A= 1/3 + 1/3^2 + 1/3^3 +…+1/3^100- 1/3^2 – 1/3^3- 1/3^4 -…-1/3^101`
`2/3 A= 1/3 – 1/3^101`
`A= (1/3 – 1/3^101) : 2/3`
`A= (1/3 – 1/3^101) . 3/2`
`A= 1/2 – 1/(3^100 .2)`
Vậy `A= 1/2 – 1/(3^100 .2)`