Tính: $\frac{2.2014}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+…+\frac{1}{1+2+3+2014}}$

Tính: $\frac{2.2014}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+…+\frac{1}{1+2+3+2014}}$

0 bình luận về “Tính: $\frac{2.2014}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+…+\frac{1}{1+2+3+2014}}$”

  1. Ta có

    $1 + 2 + \cdots + n = \dfrac{n(n+1)}{2}$

    Do đó

    $\dfrac{2.2014}{1 + \frac{1}{1+2} + \frac{1}{1+ 2 + 3} + \cdots + \frac{1}{1 + 2 + \cdots + 2014}} = \dfrac{2.2014}{1 + \frac{2}{2.3} + \frac{2}{3.4} + \cdots + \frac{2}{2014.2015}}$

    $= \dfrac{2.2014}{1 + 2 \left( \frac{1}{2.3} + \frac{1}{3.4} + \cdots + \frac{1}{2014.2015} \right)}$

    $= \dfrac{2.2014}{1 + 2 \left( \frac{1}{2} – \frac{1}{3} + \frac{1}{3} – \frac{1}{4} +\cdots + \frac{1}{2014} – \frac{1}{2015} \right)}$

    $= \dfrac{2.2014}{1 + 2 \left( \frac{1}{2} – \frac{1}{2015} \right)}$

    $= \dfrac{2.2014}{1 + 2 . \frac{2013}{2.2015}}$

    $= \dfrac{2.2014}{1 + \frac{2013}{2015}}$

    $= \dfrac{4028}{\frac{4028}{2015}} = 2015$

    Vậy biểu thức trên bằng $2015$.

    Bình luận

Viết một bình luận