Tính: $\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{109} }{\frac{100}{1}+\frac{99}{2}+\frac{98}{3}+…+\frac{1}{100}}$ Plz, mai nộp rùi ak.

Tính:
$\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{109} }{\frac{100}{1}+\frac{99}{2}+\frac{98}{3}+…+\frac{1}{100}}$
Plz, mai nộp rùi ak.

0 bình luận về “Tính: $\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{109} }{\frac{100}{1}+\frac{99}{2}+\frac{98}{3}+…+\frac{1}{100}}$ Plz, mai nộp rùi ak.”

  1. $\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…+\frac{1}{109}}{\frac{100}{1}+\frac{99}{2}+\frac{98}{3}+…+\frac{1}{100}}$ là sai. Phải là $\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…+\frac{1}{101}}{\frac{100}{1}+\frac{99}{2}+\frac{98}{3}+…+\frac{1}{100}}$

    Đặt B=$\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…+\frac{1}{101}}{\frac{100}{1}+\frac{99}{2}+\frac{98}{3}+…+\frac{1}{100}}$

    Xét: ${\frac{100}{1}+\frac{99}{2}+\frac{98}{3}+…+\frac{1}{100}}$

    =$(1+{\frac{99}{2})+(1+\frac{98}{3})+…+(1+\frac{1}{100})}$

    =$\frac{101}{2}$ + $\frac{101}{3}$ + …+$\frac{101}{100}$ + $\frac{101}{101}$ 

    =101.($\frac{1}{2}$+$\frac{1}{3}$ +…+$\frac{1}{100}$ + $\frac{1}{101}$  )

    ⇒B=$\frac{\frac{1}{2}+\frac{1}{3} +…+\frac{1}{100} + \frac{1}{101}}{101.(\frac{1}{2}+\frac{1}{3}+…+\frac{1}{100} + \frac{1}{101})}$ 

    ⇒B=$\frac{1}{101}$ 

    Vậy B=$\frac{1}{101}$ 

    Bình luận

Viết một bình luận