Tính:
$\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{109} }{\frac{100}{1}+\frac{99}{2}+\frac{98}{3}+…+\frac{1}{100}}$
Plz, mai nộp rùi ak.
Tính:
$\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{109} }{\frac{100}{1}+\frac{99}{2}+\frac{98}{3}+…+\frac{1}{100}}$
Plz, mai nộp rùi ak.
$\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…+\frac{1}{109}}{\frac{100}{1}+\frac{99}{2}+\frac{98}{3}+…+\frac{1}{100}}$ là sai. Phải là $\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…+\frac{1}{101}}{\frac{100}{1}+\frac{99}{2}+\frac{98}{3}+…+\frac{1}{100}}$
Đặt B=$\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…+\frac{1}{101}}{\frac{100}{1}+\frac{99}{2}+\frac{98}{3}+…+\frac{1}{100}}$
Xét: ${\frac{100}{1}+\frac{99}{2}+\frac{98}{3}+…+\frac{1}{100}}$
=$(1+{\frac{99}{2})+(1+\frac{98}{3})+…+(1+\frac{1}{100})}$
=$\frac{101}{2}$ + $\frac{101}{3}$ + …+$\frac{101}{100}$ + $\frac{101}{101}$
=101.($\frac{1}{2}$+$\frac{1}{3}$ +…+$\frac{1}{100}$ + $\frac{1}{101}$ )
⇒B=$\frac{\frac{1}{2}+\frac{1}{3} +…+\frac{1}{100} + \frac{1}{101}}{101.(\frac{1}{2}+\frac{1}{3}+…+\frac{1}{100} + \frac{1}{101})}$
⇒B=$\frac{1}{101}$
Vậy B=$\frac{1}{101}$