Tính: $\frac{(n-1).n.(n+1).(n+2)}{4}$ + $\frac{n.(n+1)}{2}$

Tính: $\frac{(n-1).n.(n+1).(n+2)}{4}$ + $\frac{n.(n+1)}{2}$

0 bình luận về “Tính: $\frac{(n-1).n.(n+1).(n+2)}{4}$ + $\frac{n.(n+1)}{2}$”

  1. Bạn tham khảo :

            $\dfrac{(n-1). n.(n+1).(n+2)}{4} + \dfrac{ 2n.(n+1)}{4}$  

           = $\dfrac{ 2n(n+1) + (n-1). n.(n+1).(n+2)}{4}$

           = $\dfrac{ 2n(n+1) + (n-1). n.(n^2+2)}{4}$      

           = $\dfrac{ 2n(n+1) + (n-1). (n^3+2)}{4}$       

          = $\dfrac{ (2n^2+2n) +  (n^4-2)}{4}$       

    Bình luận
  2. `\frac{(n-1).n.(n+1)(n+2)}{4}+\frac{n.(n+1)}{2}`

    `=\frac{[(n-1).(n+1)].n.(n+2)}{4}+\frac{2n.(n+1)}{4}`

    `=\frac{(n^2-1)(n^2+2n)+(2n^2+2n)}{4}` 

    `= \frac{n^4+2n^3-n^2-2n+2n^2+2n}{4}` 

    `= \frac{n^4+2n^3+n^2}{4}`

    `= \frac{n^2.(n^2+2n+1)}{4}`

    `= \frac{n^2.(n+1)^2}{4}`

    `= \frac{[n.(n+1)]^2}{2^2}=\frac{[n.(n+1)]^2}{(-2)^2}`

    `= (\frac{n^2+n}{2})^2=(\frac{n^2+n}{-2})^2.`

     

    Bình luận

Viết một bình luận