$G$ $=$ $1$ $+$ $\frac{9}{45}$ $+$ $\frac{9}{105}$ $+$ $\frac{9}{189}$ $+$ $…$ $+$ $\frac{9}{29997}$ $=$ $1$ $+$ $\frac{3}{15}$ $+$ $\frac{3}{35}$ $+$ $\frac{3}{63}$ $+$ $…$ $+$ $\frac{3}{9999}$ $=$ $\frac{3}{1.3}$ $+$ $\frac{3}{3.5}$ $+$ $\frac{3}{5.7}$ $+$ $\frac{3}{7.9}$ $+$ $…$ $+$ $\frac{3}{99.101}$ $=$ $\frac{3.2}{2.1.3}$ $+$ $\frac{3.2}{2.3.5}$ $+$ $\frac{3.2}{2.5.7}$ $+$ $\frac{3.2}{2.7.9}$ $+$ $…$ $+$ $\frac{3.2}{2.99.101}$ $=$ $\frac{3}{2}$ $($ $\frac{2}{1.3}$ $+$ $\frac{2}{3.5}$ $+$ $\frac{2}{5.7}$ $+$ $\frac{2}{7.9}$ $+$ $…$ $+$ $\frac{2}{99.101}$ $)$ $=$ $\frac{3}{2}$ $($ $1$ $-$ $\frac{1}{3}$ $+$ $\frac{1}{3}$ $-$ $\frac{1}{5}$ $+$ $\frac{1}{5}$ $-$ $\frac{1}{7}$ $+$ … $+$ $\frac{1}{99}$ $-$ $\frac{1}{101}$ $)$ $=$ $\frac{3}{2}$ $($ $1$ $-$ $\frac{1}{101}$ $)$ $=$ $\frac{3}{2}$ $.$ $\frac{100}{101}$ $=$ $\frac{150}{101}$ Chúc bạn học tốt! Bình luận
`G = 1 + 9/45 + 9/105 + 9/189 + … + 9/29997` `G = 1 + (9 : 3)/(45 : 3) + (9 : 3)/(105 : 3) + (9 : 3)/(189 : 3) + … + (9 : 3)/(29997 : 3)` `G = 3/3 + 3/15 + 3/35 + 3/63 + … + 3/9999` `G = 3/(1 . 3) + 3/(5 . 3) + 3/(5 .7) + 3/(7 . 9) + … + 3/(99 . 101)` `G = 3/2 . (2/(1 . 3) + 2/(5 . 3) + 2/(5 . 7) + 2/(7 . 9) + … + 3/(99 . 101))` `G = 3/2 . (1 – 1/3 + 1/3 – 1/5 + 1/5 – 1/7 + 1/7 – 1/9 + … + 1/99 – 1/101)` `G = 3/2 . (1 – 1/101)` `G = 3/2 . 100/101` `G = 300/202` `G = 150/101` Bình luận
$G$ $=$ $1$ $+$ $\frac{9}{45}$ $+$ $\frac{9}{105}$ $+$ $\frac{9}{189}$ $+$ $…$ $+$ $\frac{9}{29997}$
$=$ $1$ $+$ $\frac{3}{15}$ $+$ $\frac{3}{35}$ $+$ $\frac{3}{63}$ $+$ $…$ $+$ $\frac{3}{9999}$
$=$ $\frac{3}{1.3}$ $+$ $\frac{3}{3.5}$ $+$ $\frac{3}{5.7}$ $+$ $\frac{3}{7.9}$ $+$ $…$ $+$ $\frac{3}{99.101}$
$=$ $\frac{3.2}{2.1.3}$ $+$ $\frac{3.2}{2.3.5}$ $+$ $\frac{3.2}{2.5.7}$ $+$ $\frac{3.2}{2.7.9}$ $+$ $…$ $+$ $\frac{3.2}{2.99.101}$
$=$ $\frac{3}{2}$ $($ $\frac{2}{1.3}$ $+$ $\frac{2}{3.5}$ $+$ $\frac{2}{5.7}$ $+$ $\frac{2}{7.9}$ $+$ $…$ $+$ $\frac{2}{99.101}$ $)$
$=$ $\frac{3}{2}$ $($ $1$ $-$ $\frac{1}{3}$ $+$ $\frac{1}{3}$ $-$ $\frac{1}{5}$ $+$ $\frac{1}{5}$ $-$ $\frac{1}{7}$ $+$ … $+$ $\frac{1}{99}$ $-$ $\frac{1}{101}$ $)$
$=$ $\frac{3}{2}$ $($ $1$ $-$ $\frac{1}{101}$ $)$
$=$ $\frac{3}{2}$ $.$ $\frac{100}{101}$ $=$ $\frac{150}{101}$
Chúc bạn học tốt!
`G = 1 + 9/45 + 9/105 + 9/189 + … + 9/29997`
`G = 1 + (9 : 3)/(45 : 3) + (9 : 3)/(105 : 3) + (9 : 3)/(189 : 3) + … + (9 : 3)/(29997 : 3)`
`G = 3/3 + 3/15 + 3/35 + 3/63 + … + 3/9999`
`G = 3/(1 . 3) + 3/(5 . 3) + 3/(5 .7) + 3/(7 . 9) + … + 3/(99 . 101)`
`G = 3/2 . (2/(1 . 3) + 2/(5 . 3) + 2/(5 . 7) + 2/(7 . 9) + … + 3/(99 . 101))`
`G = 3/2 . (1 – 1/3 + 1/3 – 1/5 + 1/5 – 1/7 + 1/7 – 1/9 + … + 1/99 – 1/101)`
`G = 3/2 . (1 – 1/101)`
`G = 3/2 . 100/101`
`G = 300/202`
`G = 150/101`