Tính giá trị biểu thức A=sin^2 (10°)+ sin^2(20°)+sin^2(30°)+sin^2(80°)+sin^2(70°)+sin^2(60°) Giúp mk nha bây giờ mk cần r 11/07/2021 Bởi Arianna Tính giá trị biểu thức A=sin^2 (10°)+ sin^2(20°)+sin^2(30°)+sin^2(80°)+sin^2(70°)+sin^2(60°) Giúp mk nha bây giờ mk cần r
Ta có $sin\alpha=cos(90°-\alpha)$ $\Rightarrow A=sin^210°+sin^220°+sin^230°+sin^280°+sin^270°+sin^260°\\=sin^210°+sin^220°+sin^230°+cos^210°+cos^220°+cos^230°$ Mà $sin^2\alpha +cos^2\alpha=1$ $\Rightarrow A=(sin^210°+cos^210°)+(sin^220°+cos^220°)+(sin^230°+cos^230°)\\=1+1+1\\=3$ Vậy $A=3$ Xin 5sao+ctlhn Bình luận
`A = sin^2(10^0) + sin^2(20^0) + sin^2(30^0) + sin^2(80^0) + sin^2(70^0) + sin^2(60^0)` `= 1 + sin^2(20^0) + sin^2(70^0) + 2` `= sin^2(20^0) + sin^2(70^0) + 2` `= sin^2(20^0) + sin^2(20^0) + 2` `= 1 + 2` `= 3` Bình luận
Ta có $sin\alpha=cos(90°-\alpha)$
$\Rightarrow A=sin^210°+sin^220°+sin^230°+sin^280°+sin^270°+sin^260°\\=sin^210°+sin^220°+sin^230°+cos^210°+cos^220°+cos^230°$
Mà $sin^2\alpha +cos^2\alpha=1$
$\Rightarrow A=(sin^210°+cos^210°)+(sin^220°+cos^220°)+(sin^230°+cos^230°)\\=1+1+1\\=3$
Vậy $A=3$
Xin 5sao+ctlhn
`A = sin^2(10^0) + sin^2(20^0) + sin^2(30^0) + sin^2(80^0) + sin^2(70^0) + sin^2(60^0)`
`= 1 + sin^2(20^0) + sin^2(70^0) + 2`
`= sin^2(20^0) + sin^2(70^0) + 2`
`= sin^2(20^0) + sin^2(20^0) + 2`
`= 1 + 2`
`= 3`