Tính góc A của tam giác ABC thoả mãn hệ thức b(b^2-a^2 ) = c( a^2. – c^2 ) 27/09/2021 Bởi Rose Tính góc A của tam giác ABC thoả mãn hệ thức b(b^2-a^2 ) = c( a^2. – c^2 )
C xen thử đi b^3-ba^2=a^2c-c^3 < = > (b+c)(b^2-bc+c^2)-a^2(b+c)=0 < = > (b+c)(b^2-bc+c^2-a^2)=0 < = > b^2-bc+c^2=a^2=b^2+c^2-2bc.cosA < = > bc(2cosA-1)=0 < = > cosA=1/2 < = > góc A=60 Bình luận
\[\begin{array}{l} b\left( {{b^2} – {a^2}} \right) = c\left( {{c^2} – {a^2}} \right)\\ \Leftrightarrow {b^3} – b{a^2} = {c^3} – c{a^2}\\ \Leftrightarrow {b^3} – {c^3} – \left( {b{a^2} – c{a^2}} \right) = 0\\ \Leftrightarrow \left( {b – c} \right)\left( {{b^2} + bc + {c^2}} \right) – {a^2}\left( {b – c} \right) = 0\\ \Leftrightarrow \left( {b – c} \right)\left( {{b^2} + bc + {c^2} – {a^2}} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} b – c = 0\\ {b^2} + bc + {c^2} = {a^2} \end{array} \right.\,\,\,\\ + )\,\,\,b – c = 0 \Leftrightarrow b = c \Rightarrow \Delta ABC\,\,can\,\,\,tai\,\,A.\\ + )\,\,{b^2} + bc + {c^2} = {a^2} \Leftrightarrow {b^2} + {c^2} – {a^2} = – bc\\ Ta\,\,co:\,\,\,\cos A = \frac{{{b^2} + {c^2} – {a^2}}}{{2bc}} = \frac{{ – bc}}{{2bc}} = – \frac{1}{2}\\ \Rightarrow \cos A = – \frac{1}{2} \Rightarrow \angle A = {120^0}. \end{array}\] Bình luận
C xen thử đi
b^3-ba^2=a^2c-c^3
< = > (b+c)(b^2-bc+c^2)-a^2(b+c)=0
< = > (b+c)(b^2-bc+c^2-a^2)=0
< = > b^2-bc+c^2=a^2=b^2+c^2-2bc.cosA
< = > bc(2cosA-1)=0
< = > cosA=1/2
< = > góc A=60
\[\begin{array}{l}
b\left( {{b^2} – {a^2}} \right) = c\left( {{c^2} – {a^2}} \right)\\
\Leftrightarrow {b^3} – b{a^2} = {c^3} – c{a^2}\\
\Leftrightarrow {b^3} – {c^3} – \left( {b{a^2} – c{a^2}} \right) = 0\\
\Leftrightarrow \left( {b – c} \right)\left( {{b^2} + bc + {c^2}} \right) – {a^2}\left( {b – c} \right) = 0\\
\Leftrightarrow \left( {b – c} \right)\left( {{b^2} + bc + {c^2} – {a^2}} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
b – c = 0\\
{b^2} + bc + {c^2} = {a^2}
\end{array} \right.\,\,\,\\
+ )\,\,\,b – c = 0 \Leftrightarrow b = c \Rightarrow \Delta ABC\,\,can\,\,\,tai\,\,A.\\
+ )\,\,{b^2} + bc + {c^2} = {a^2} \Leftrightarrow {b^2} + {c^2} – {a^2} = – bc\\
Ta\,\,co:\,\,\,\cos A = \frac{{{b^2} + {c^2} – {a^2}}}{{2bc}} = \frac{{ – bc}}{{2bc}} = – \frac{1}{2}\\
\Rightarrow \cos A = – \frac{1}{2} \Rightarrow \angle A = {120^0}.
\end{array}\]