Tính : $N = \frac{\frac{1}{101} + \frac{1}{102} + \frac{1}{103} + … + \frac{1}{200}}{\frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + … + \frac{1}

Tính :
$N = \frac{\frac{1}{101} + \frac{1}{102} + \frac{1}{103} + … + \frac{1}{200}}{\frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + … + \frac{1}{199.200}}$

0 bình luận về “Tính : $N = \frac{\frac{1}{101} + \frac{1}{102} + \frac{1}{103} + … + \frac{1}{200}}{\frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + … + \frac{1}”

  1. Giải thích các bước giải:

    Ta có :
    $\dfrac{1}{1.2}+\dfrac{1}{3.4}+..+\dfrac{1}{199.200}$ 

    $=\dfrac{2-1}{1.2}+\dfrac{4-3}{3.4}+..+\dfrac{200-199}{199.200}$ 

    $=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+…\dfrac{1}{199}-\dfrac{1}{200}$ 

    $=(\dfrac{1}{1}+\dfrac{1}{3}+\dfrac{1}{5}+..+\dfrac{1}{199})-(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+..+\dfrac{1}{200})$

    $=(\dfrac{1}{1}+\dfrac{1}{3}+\dfrac{1}{5}+..+\dfrac{1}{199}+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+..+\dfrac{1}{200})-2(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+..+\dfrac{1}{200})$

    $=(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+..+\dfrac{1}{199}+\dfrac{1}{200})-2(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+..+\dfrac{1}{200})$

    $=(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+..+\dfrac{1}{199}+\dfrac{1}{200})-(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+..+\dfrac{1}{100})$

    $=\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{200}$

    $\to N=1$

    Bình luận

Viết một bình luận