Tính nguyên hàm của (1/cosx) dx Tính: $\int\dfrac{dx}{\cos x}$

Tính nguyên hàm của (1/cosx) dx
Tính: $\int\dfrac{dx}{\cos x}$

0 bình luận về “Tính nguyên hàm của (1/cosx) dx Tính: $\int\dfrac{dx}{\cos x}$”

  1. Đáp án:

    $\int\dfrac{dx}{\cos x}=\dfrac{1}{2}\left[{-\ln(1-\sin x)+\ln(1+\sin x)}\right]$

    Giải thích các bước giải:

    Đặt $A=\int\dfrac{dx}{\cos x}=\int\dfrac{\cos x}{{\cos}^2x}dx=\int\dfrac{\cos x}{(1-{\sin }^2x)}dx$

    Đặt $\sin x=t$ (-1<t<1) $\Rightarrow \cos xdx=dt$

    $A=\int\dfrac{dt}{1-t^2}=\int\dfrac{dt}{(1-t)(1+t)}$

    $=\dfrac{1}{2}\int\left({\dfrac{1}{1-t}+\dfrac{1}{1+t}}\right)dt=\dfrac{1}{2}\left({-\ln|1-t|}+\ln|1+t|\right)$

    $=\dfrac{1}{2}\left({-\ln(1-t)}+\ln(1+t)\right)$ (do -1<t<1)

    Vậy $\int\dfrac{dx}{\cos x}=\dfrac{1}{2}\left[{-\ln(1-\sin x)+\ln(1+\sin x)}\right]$

    Bình luận

Viết một bình luận