Tính nhanh 1/2 +1/4+1/8+1/6+….+1/512+1/1024

Tính nhanh
1/2 +1/4+1/8+1/6+….+1/512+1/1024

0 bình luận về “Tính nhanh 1/2 +1/4+1/8+1/6+….+1/512+1/1024”

  1.    Ta đặt A

      A=1/2+1/4+1/8+1/16+….+1/512+1/1024

      A×2=(1/2+1/4+1/8+1/16+…..+1/512+1/1024)

    A×2=1+1/2+1/4+1/8+….+1/256+1/512

    A×2-A=1+1/2+1/4+1/8+….+1/256+1/512-(1/2+1/4+1/8+1/16+….+1/512+1/1024)

    A=1-1/1024

    A=1023/1024

        Chúc bn học tốt

       

     

     

    Bình luận
  2. Đáp án:

    A = $\frac{1}{2}$ + $\frac{1}{4}$ + $\frac{1}{8}$ + … + $\frac{1}{512}$ + $\frac{1}{1024}$ 

    A = $\frac{1}{2^{1}}$ + $\frac{1}{2^{2}}$ + $\frac{1}{2^{3}}$ + … + $\frac{1}{2^{9}}$ + $\frac{1}{2^{10}}$

    $\frac{1}{2}$ . A = $\frac{1}{2}$ . ($\frac{1}{2^{1}}$ + $\frac{1}{2^{2}}$ + $\frac{1}{2^{3}}$ + … + $\frac{1}{2^{9}}$ + $\frac{1}{2^{10}}$)

    $\frac{1}{2}$ . A = $\frac{1}{2^{2}}$ + $\frac{1}{2^{3}}$ + $\frac{1}{2^{4}}$ + … + $\frac{1}{2^{10}}$ + $\frac{1}{2^{11}}$

    A – $\frac{1}{2}$ . A = ($\frac{1}{2^{1}}$ + $\frac{1}{2^{2}}$ + $\frac{1}{2^{3}}$ + … + $\frac{1}{2^{9}}$ + $\frac{1}{2^{10}}$) – ($\frac{1}{2^{2}}$ + $\frac{1}{2^{3}}$ + $\frac{1}{2^{4}}$ + … + $\frac{1}{2^{10}}$ + $\frac{1}{2^{11}}$)

    $\frac{1}{2}$ . A = $\frac{1}{2^{1}}$ – $\frac{1}{2^{11}}$

    A = ($\frac{1}{2}$ – $\frac{1}{2048}$) . 2

    A = $\frac{1023}{1024}$.

    Chúc học tốt!!!

     

    Bình luận

Viết một bình luận