tính nhanh :a, [1 +1/2005 ]x[1+ 1/2006 ]x[1+ 1/2007 ]x[1+ 1/2008 ]x[1+ 1/2009 ] 14/11/2021 Bởi Alice tính nhanh :a, [1 +1/2005 ]x[1+ 1/2006 ]x[1+ 1/2007 ]x[1+ 1/2008 ]x[1+ 1/2009 ]
Đáp án: Giải thích các bước giải: $(1+\frac{1}{2005})(1+\frac{1}{2006})(1+\frac{1}{2007})(1+\frac{1}{2008})(1+\frac{1}{2009})\\=\frac{2006}{2005}\times \frac{2007}{2006}\times \frac{2008}{2007}\times \frac{2009}{2008}\times \frac{2010}{2009}\\=\frac{402}{401}$ Bình luận
$(1+\frac{1}{2005})×(1+\frac{1}{2006})×(1+\frac{1}{2007})×(1+\frac{1}{2008})×(1+\frac{1}{2009})$ $=\frac{2006}{2005}×\frac{2007}{2006}×\frac{2008}{2007}×\frac{2009}{2008}×\frac{2010}{2009}$ $=\frac{2010}{2005}=\frac{402}{401}$. Bình luận
Đáp án:
Giải thích các bước giải:
$(1+\frac{1}{2005})(1+\frac{1}{2006})(1+\frac{1}{2007})(1+\frac{1}{2008})(1+\frac{1}{2009})\\=\frac{2006}{2005}\times \frac{2007}{2006}\times \frac{2008}{2007}\times \frac{2009}{2008}\times \frac{2010}{2009}\\=\frac{402}{401}$
$(1+\frac{1}{2005})×(1+\frac{1}{2006})×(1+\frac{1}{2007})×(1+\frac{1}{2008})×(1+\frac{1}{2009})$
$=\frac{2006}{2005}×\frac{2007}{2006}×\frac{2008}{2007}×\frac{2009}{2008}×\frac{2010}{2009}$
$=\frac{2010}{2005}=\frac{402}{401}$.