Tính nhanh S = $\frac{2}{3^1}$ – $\frac{2}{3^2}$ + $\frac{2}{3^3}$ – $\frac{2}{3^4}$ + …+ $\frac{2}{3^89}$ – $\frac{2}{3^ 90}$

Tính nhanh
S = $\frac{2}{3^1}$ – $\frac{2}{3^2}$ + $\frac{2}{3^3}$ – $\frac{2}{3^4}$ + …+ $\frac{2}{3^89}$ – $\frac{2}{3^ 90}$

0 bình luận về “Tính nhanh S = $\frac{2}{3^1}$ – $\frac{2}{3^2}$ + $\frac{2}{3^3}$ – $\frac{2}{3^4}$ + …+ $\frac{2}{3^89}$ – $\frac{2}{3^ 90}$”

  1. Đáp án: `S = \frac{3^{90}-1}{3^{90}.2}`.

    Giải thích các bước giải:

    `S = 2/3 – 2/{3^2} + 2/{3^3} – 2/{3^4} + …. + 2/{3^{89}} – 2/{3^{90}}`

    `⇔ 3S = 2 –  2/3 +  2/{3^2} – 2/{3^3} +  …. + 2/{8^{88}} – 2/{3^{89}}`

    `⇔ 3S + S = (2 –  2/3 +  2/{3^2} – 2/{3^3} +  …. + 2/{8^{88}} – 2/{3^{89}})+( 2/3 – 2/{3^2} + 2/{3^3} – 2/{3^4} + …. + 2/{3^{89}} – 2/{3^{90}})`

    `⇔ 4S = 2 – 2/{3^{90}}`

    `⇔ 4S = {2.3^{90} – 2}/{3^{90}}`

    `⇔ S = \frac{2(3^{90}-1)}{3^{90}.4}`

    `⇔ S = \frac{3^{90}-1}{3^{90}.2}`.

     

    Bình luận
  2. Đáp án:

    $\begin{array}{l}
    S = \dfrac{2}{{{3^1}}} – \dfrac{2}{{{3^2}}} + \dfrac{2}{{{3^3}}} – \dfrac{2}{{{3^4}}} + .. + \dfrac{2}{{{3^{89}}}} – \dfrac{2}{{{3^{90}}}}\\
     = 2.\left( {\dfrac{1}{{{3^1}}} – \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^3}}} – \dfrac{1}{{{3^4}}} + … + \dfrac{1}{{{3^{89}}}} – \dfrac{1}{{{3^{90}}}}} \right)\\
     = 2.A\\
    A = \dfrac{1}{{{3^1}}} – \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^3}}} – \dfrac{1}{{{3^4}}} + … + \dfrac{1}{{{3^{89}}}} – \dfrac{1}{{{3^{90}}}}\\
     \Rightarrow 3.A = 1 – \dfrac{1}{{{3^1}}} + \dfrac{1}{{{3^2}}} – \dfrac{1}{{{3^3}}} + … + \dfrac{1}{{{3^{88}}}} – \dfrac{1}{{{3^{89}}}}\\
     \Rightarrow 3A + A = 4A = 1 – \dfrac{1}{{{3^{90}}}}\\
     \Rightarrow A = \dfrac{1}{4} – \dfrac{1}{{{{4.3}^{90}}}}\\
     \Rightarrow S = 2.\left( {\dfrac{1}{4} – \dfrac{1}{{{{4.3}^{90}}}}} \right)\\
     = \dfrac{1}{2} – \dfrac{1}{{{{2.3}^{90}}}}
    \end{array}$

    Bình luận

Viết một bình luận