Tính: $S=2.C_{2020}^{1}+3.2^3.C_{2020}{3}+…+2019.2^2019.C_{2020}^{2019}$

Tính:
$S=2.C_{2020}^{1}+3.2^3.C_{2020}{3}+…+2019.2^2019.C_{2020}^{2019}$

0 bình luận về “Tính: $S=2.C_{2020}^{1}+3.2^3.C_{2020}{3}+…+2019.2^2019.C_{2020}^{2019}$”

  1. Giải thích các bước giải:

     Ta có:

    $S = 2.C_{2020}^1 + {3.2^3}.C_{2020}^3 + … + {2019.2^{2019}}.C_{2020}^{2019}$

    Số hạng tổng quát của dãy tổng $S$ là:

    $\begin{array}{l}
    k{.2^k}.C_{2020}^k\left( {1 \le k \le 2019;k\not  \vdots 2} \right)\\
     = {2^k}.k.C_{2020}^k\\
     = {2^k}.2020.C_{2019}^{k – 1}\\
     = 4040.C_{2019}^{k – 1}{.2^{k – 1}}
    \end{array}$

    Khi đó:

    $S = 4040\left( {C_{2019}^0 + C_{2019}^2{{.2}^2} + C_{2019}^4{{.2}^4} + … + C_{2019}^{2018}{{.2}^{2018}}} \right)$

    Ta xét khai triển:

    $\begin{array}{l}
     + ){\left( {1 + x} \right)^{2019}} = C_{2019}^0 + C_{2019}^1.x + C_{2019}^2.{x^2} + … + C_{2019}^{2018}.{x^{2018}} + C_{2019}^{2019}.{x^{2019}}\\
     + ){\left( {1 – x} \right)^{2019}} = C_{2019}^0 – C_{2019}^1.x + C_{2019}^2.{x^2} + … + C_{2019}^{2018}.{x^{2018}} – C_{2019}^{2019}.{x^{2019}}
    \end{array}$

    Khi đó:

    $\begin{array}{l}
    {\left( {1 + x} \right)^{2019}} + {\left( {1 – x} \right)^{2019}} = 2\left( {C_{2019}^0 + C_{2019}^2.{x^2} + … + C_{2019}^{2018}.{x^{2018}}} \right)\\
     \Rightarrow C_{2019}^0 + C_{2019}^2.{x^2} + … + C_{2019}^{2018}.{x^{2018}} = \dfrac{{{{\left( {1 + x} \right)}^{2019}} + {{\left( {1 – x} \right)}^{2019}}}}{2} (*)
    \end{array}$

    Thay $x=2$ vào $(*)$ ta có:

    $\begin{array}{l}
    C_{2019}^0 + C_{2019}^2{.2^2} + … + C_{2019}^{2018}{.2^{2018}} = \dfrac{{{{\left( {1 + 2} \right)}^{2019}} + {{\left( {1 – 2} \right)}^{2019}}}}{2}\\
     \Rightarrow C_{2019}^0 + C_{2019}^2{.2^2} + … + C_{2019}^{2018}{.2^{2018}} = \dfrac{{{3^{2019}} – 1}}{2}
    \end{array}$
    Như vậy:

    $\begin{array}{l}
    S = 4040\left( {C_{2019}^0 + C_{2019}^2{{.2}^2} + C_{2019}^4{{.2}^4} + … + C_{2019}^{2018}{{.2}^{2018}}} \right)\\
     \Rightarrow S = 4040.\dfrac{{{3^{2019}} – 1}}{2}\\
     \Rightarrow S = 2020\left( {{3^{2019}} – 1} \right)
    \end{array}$

    Vậy $S = 2020\left( {{3^{2019}} – 1} \right)$

    Bình luận

Viết một bình luận