Đáp án + Giải thích các bước giải: `A = 1/3 + 1/3^2 + 1/3^3 + … + 1/3^100` `3A = 1 + 1/3 + 1/3^2 + … + 1/3^99` `3A – A = ( 1 + 1/3 + 1/3^2 + … + 1/3^99 ) – ( 1/3 + 1/3^2 + 1/3^3 + … + 1/3^100 )` `2A = 1 – 1/3^100` $\rm A = \dfrac{1-\dfrac{1}{3^{100}}}{2}$ Bình luận
Đáp án: `A=(1-1/3^100)/2` Giải thích các bước giải: `A=1/3+1/3^2+1/3^3+…+1/3^100``3A=1+1/3+1/3^2+…+1/3^99``3A-A=(1+1/3+1/3^2+…+1/3^99)-(1/3+1/3^2+1/3^3+…+1/3^100)``A.(3-1)=1+1/3+1/3^2+…+1/3^99-1/3-1/3^2-1/3^3-…-1/3^100``A2=1+(1/3-1/3)+(1/3^2-1/3^2)+…+(1/3^99-13^99)-1/3^100``A2=1-1/3^100``A=(1-1/3^100)/2` Bình luận
Đáp án + Giải thích các bước giải:
`A = 1/3 + 1/3^2 + 1/3^3 + … + 1/3^100`
`3A = 1 + 1/3 + 1/3^2 + … + 1/3^99`
`3A – A = ( 1 + 1/3 + 1/3^2 + … + 1/3^99 ) – ( 1/3 + 1/3^2 + 1/3^3 + … + 1/3^100 )`
`2A = 1 – 1/3^100`
$\rm A = \dfrac{1-\dfrac{1}{3^{100}}}{2}$
Đáp án:
`A=(1-1/3^100)/2`
Giải thích các bước giải:
`A=1/3+1/3^2+1/3^3+…+1/3^100`
`3A=1+1/3+1/3^2+…+1/3^99`
`3A-A=(1+1/3+1/3^2+…+1/3^99)-(1/3+1/3^2+1/3^3+…+1/3^100)`
`A.(3-1)=1+1/3+1/3^2+…+1/3^99-1/3-1/3^2-1/3^3-…-1/3^100`
`A2=1+(1/3-1/3)+(1/3^2-1/3^2)+…+(1/3^99-13^99)-1/3^100`
`A2=1-1/3^100`
`A=(1-1/3^100)/2`