Tính tổng:
a) S = 6 + 6 mũ 2 + 6 mũ 3 + … + 6 mũ 99 + 6 mũ 100
b) S = 5 + 11 + 17 + … + 95 +101
c) S = 1/1×2 + 1/2×3 + 1/3×4 + … + 1/49×50
d) S = 6/5×7 + 6/7×9 + 6/9×11 +… + 6/57×59
Tính tổng:
a) S = 6 + 6 mũ 2 + 6 mũ 3 + … + 6 mũ 99 + 6 mũ 100
b) S = 5 + 11 + 17 + … + 95 +101
c) S = 1/1×2 + 1/2×3 + 1/3×4 + … + 1/49×50
d) S = 6/5×7 + 6/7×9 + 6/9×11 +… + 6/57×59
Đáp án:
$\begin{array}{l}
a)S = 6 + {6^2} + {6^3} + … + {6^{99}} + {6^{100}}\\
\Rightarrow 6.S = {6^2} + {6^3} + {6^4} + … + {6^{100}} + {6^{101}}\\
\Rightarrow 6S – S = {6^{101}} – 6\\
\Rightarrow S = \dfrac{{{6^{101}} – 6}}{5}\\
b)S = 5 + 11 + 17 + … + 95 + 101\\
Số\,số\,hạng:\dfrac{{101 – 5}}{4} + 1 = 25\\
\Rightarrow S = \dfrac{{\left( {101 + 5} \right).25}}{2} = 1325\\
c)S = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + … + \dfrac{1}{{49.50}}\\
= 1 – \dfrac{1}{2} + \dfrac{1}{2} – \dfrac{1}{3} + \dfrac{1}{3} – \dfrac{1}{4} + … + \dfrac{1}{{49}} – \dfrac{1}{{50}}\\
= 1 – \dfrac{1}{{50}}\\
= \dfrac{{49}}{{50}}\\
d)S = \dfrac{6}{{5.7}} + \dfrac{6}{{7.9}} + \dfrac{6}{{9.11}} + … + \dfrac{6}{{57.59}}\\
= 3.\left( {\dfrac{2}{{5.7}} + \dfrac{2}{{7.9}} + \dfrac{2}{{9.11}} + … + \dfrac{2}{{57.59}}} \right)\\
= 3.\left( {\dfrac{1}{5} – \dfrac{1}{7} + \dfrac{1}{7} – \dfrac{1}{9} + … + \dfrac{1}{{57}} – \dfrac{1}{{59}}} \right)\\
= 3.\left( {\dfrac{1}{5} – \dfrac{1}{{59}}} \right)\\
= 3.\dfrac{{54}}{{295}} = \dfrac{{162}}{{295}}
\end{array}$
Đáp án:
Giải thích các bước giải: