Tính tổng của S S=2+2^2+2^3+2^4+…+2^100 S=2+2^3+2^5+…+2^99 S=3+3^3+3^4+…+3^50

Tính tổng của S
S=2+2^2+2^3+2^4+…+2^100
S=2+2^3+2^5+…+2^99
S=3+3^3+3^4+…+3^50

0 bình luận về “Tính tổng của S S=2+2^2+2^3+2^4+…+2^100 S=2+2^3+2^5+…+2^99 S=3+3^3+3^4+…+3^50”

  1. `S=2+2^2+2^3+2^4+…+2^100`
    `2S=2^2+2^3+2^4+2^5+…+2^101`
    `2S-S=(2^2+2^3+2^4+2^5+…+2^101)-(2+2^2+2^3+2^4+…+2^100)`
    `S=2^101-2`

    Vậy `S=2^101-2`

    `S=2+2^3+2^5+…+2^99`
    `2^2S=2^3+2^5+2^7+…+2^101`
    `4S-S=(2^3+2^5+2^7+…+2^101)-(2+2^3+2^5+…+2^99)`
    `3S=2^101-2`
    `S=[2^101-2]/3`
    Vậy `S=[2^101-2]/3`
    `S=3+3^2+3^3+3^4+…+3^50`
    `3S=3^2+3^3+3^4+3^5+…+3^51`
    `3S-S=(3^2+3^3+3^4+3^5+…+3^51)-(3+3^3+3^4+…+3^50)`
    `2S=3^51-3`
    `S=[3^51-3]/3`
    Vậy `S=[3^51-3]/3`

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

    1)S=2+2²+2³+2^4+…+2^100

    ⇔2S=2²+2³+2^4+…+2^100+2^101

    ⇔2S-S= (2²+2³+2^4+…+2^100+2^101)-(2+2²+2³+2^4+…+2^100)

    ⇔S=2^101 – 2

    Vậy S=2^101-2

    2)S=2+2³+2^5+…+2^99

    ⇔2².S=2^3+2^5+2^7+..+2^101

    ⇔4.S-S=(2^3+2^5+2^7+..+2^101)-(2+2^3+2^5+..+2^99)

    ⇔3S=2^101 – 2

    ⇔S=(2^101 – 2):3

    Vậy S=(2^101-2):3

    3)S=3+3^3+3^4+…+3^50

    3S=S=3²+3^4+3^5+…+3^51

    3S-S=(3²+3^4+3^5+…+3^51) – (3+3^3+3^4+…+3^50)

    2S=3²+ 3^51 – 3 – 3³

    S=3^51

    Vậy S=3^51

    Bình luận

Viết một bình luận