Tính tổng của S S=2+2^2+2^3+2^4+…+2^100 S=2+2^3+2^5+…+2^99 S=3+3^3+3^4+…+3^50 04/07/2021 Bởi Arya Tính tổng của S S=2+2^2+2^3+2^4+…+2^100 S=2+2^3+2^5+…+2^99 S=3+3^3+3^4+…+3^50
`S=2+2^2+2^3+2^4+…+2^100``2S=2^2+2^3+2^4+2^5+…+2^101``2S-S=(2^2+2^3+2^4+2^5+…+2^101)-(2+2^2+2^3+2^4+…+2^100)``S=2^101-2` Vậy `S=2^101-2` `S=2+2^3+2^5+…+2^99``2^2S=2^3+2^5+2^7+…+2^101``4S-S=(2^3+2^5+2^7+…+2^101)-(2+2^3+2^5+…+2^99)``3S=2^101-2``S=[2^101-2]/3`Vậy `S=[2^101-2]/3``S=3+3^2+3^3+3^4+…+3^50``3S=3^2+3^3+3^4+3^5+…+3^51``3S-S=(3^2+3^3+3^4+3^5+…+3^51)-(3+3^3+3^4+…+3^50)``2S=3^51-3``S=[3^51-3]/3`Vậy `S=[3^51-3]/3` Bình luận
Đáp án: Giải thích các bước giải: 1)S=2+2²+2³+2^4+…+2^100 ⇔2S=2²+2³+2^4+…+2^100+2^101 ⇔2S-S= (2²+2³+2^4+…+2^100+2^101)-(2+2²+2³+2^4+…+2^100) ⇔S=2^101 – 2 Vậy S=2^101-2 2)S=2+2³+2^5+…+2^99 ⇔2².S=2^3+2^5+2^7+..+2^101 ⇔4.S-S=(2^3+2^5+2^7+..+2^101)-(2+2^3+2^5+..+2^99) ⇔3S=2^101 – 2 ⇔S=(2^101 – 2):3 Vậy S=(2^101-2):3 3)S=3+3^3+3^4+…+3^50 3S=S=3²+3^4+3^5+…+3^51 3S-S=(3²+3^4+3^5+…+3^51) – (3+3^3+3^4+…+3^50) 2S=3²+ 3^51 – 3 – 3³ S=3^51 Vậy S=3^51 Bình luận
`S=2+2^2+2^3+2^4+…+2^100`
`2S=2^2+2^3+2^4+2^5+…+2^101`
`2S-S=(2^2+2^3+2^4+2^5+…+2^101)-(2+2^2+2^3+2^4+…+2^100)`
`S=2^101-2`
Vậy `S=2^101-2`
`S=2+2^3+2^5+…+2^99`
`2^2S=2^3+2^5+2^7+…+2^101`
`4S-S=(2^3+2^5+2^7+…+2^101)-(2+2^3+2^5+…+2^99)`
`3S=2^101-2`
`S=[2^101-2]/3`
Vậy `S=[2^101-2]/3`
`S=3+3^2+3^3+3^4+…+3^50`
`3S=3^2+3^3+3^4+3^5+…+3^51`
`3S-S=(3^2+3^3+3^4+3^5+…+3^51)-(3+3^3+3^4+…+3^50)`
`2S=3^51-3`
`S=[3^51-3]/3`
Vậy `S=[3^51-3]/3`
Đáp án:
Giải thích các bước giải:
1)S=2+2²+2³+2^4+…+2^100
⇔2S=2²+2³+2^4+…+2^100+2^101
⇔2S-S= (2²+2³+2^4+…+2^100+2^101)-(2+2²+2³+2^4+…+2^100)
⇔S=2^101 – 2
Vậy S=2^101-2
2)S=2+2³+2^5+…+2^99
⇔2².S=2^3+2^5+2^7+..+2^101
⇔4.S-S=(2^3+2^5+2^7+..+2^101)-(2+2^3+2^5+..+2^99)
⇔3S=2^101 – 2
⇔S=(2^101 – 2):3
Vậy S=(2^101-2):3
3)S=3+3^3+3^4+…+3^50
3S=S=3²+3^4+3^5+…+3^51
3S-S=(3²+3^4+3^5+…+3^51) – (3+3^3+3^4+…+3^50)
2S=3²+ 3^51 – 3 – 3³
S=3^51
Vậy S=3^51