Tính tổng S của các nghiệm của phương trình sinx = 1/2 trên đoạn [ -pi/2,pi/2]

Tính tổng S của các nghiệm của phương trình sinx = 1/2 trên đoạn [ -pi/2,pi/2]

0 bình luận về “Tính tổng S của các nghiệm của phương trình sinx = 1/2 trên đoạn [ -pi/2,pi/2]”

  1. Đáp án:

     Tổng của các nghiệm là $\dfrac{\pi}6$

    Giải thích các bước giải:

     $\sin x=\dfrac12$

    $\Leftrightarrow \left[\begin{array}{I}x=\dfrac{\pi}6+k2\pi\\x=\pi-\dfrac{\pi}6+k2\pi=\dfrac{5\pi}6+k2\pi\end{array}\right.$ $(k\in\mathbb Z)$

    Xét $-\dfrac{\pi}2\le\dfrac{\pi}6+k2\pi\le\dfrac{\pi}2\Leftrightarrow-0,33\le k\le0,16$

    $k\in\mathbb Z\Rightarrow k=0\Rightarrow x=\dfrac{\pi}6$

    Xét $-\dfrac{\pi}2\le\dfrac{5\pi}6+k2\pi\le\dfrac{\pi}2\Leftrightarrow-0,66\le k\le-0,16$

    $k\in\mathbb Z\Rightarrow$ không có giá trị của k thỏa mãn.

    Vậy nghiệm của phương trình $\sin x=\dfrac12$ trên đoạn $\left[{-\dfrac{\pi}2;\dfrac{\pi}2}\right]$ là

    $\dfrac{\pi}{6}$.

    Vậy tổng $S$ của các nghiệm phương trình là $\dfrac{\pi}6$.

    Bình luận

Viết một bình luận