Tính tổng sau: a. 1/1.2+1/2.3+1/3.4+…+1/a.(a+1) b. 2/1.3+2/3.5+2/5.7+…+2/(2n+1).(2n+3) c. 1/3+1/15+1/35+1/63+1/99

Tính tổng sau:
a. 1/1.2+1/2.3+1/3.4+…+1/a.(a+1)
b. 2/1.3+2/3.5+2/5.7+…+2/(2n+1).(2n+3)
c. 1/3+1/15+1/35+1/63+1/99

0 bình luận về “Tính tổng sau: a. 1/1.2+1/2.3+1/3.4+…+1/a.(a+1) b. 2/1.3+2/3.5+2/5.7+…+2/(2n+1).(2n+3) c. 1/3+1/15+1/35+1/63+1/99”

  1. a) `1/1.2  + 1/2.3 + 1/3.4 +…+ 1/(a.(a+1))`

    `=1 – 1/2 + 1/2 – 1/3 + 1/3 -1/4+…+ 1/a – 1/(a+1)`

    `= 1- 1/(a+1)`

    b) `2/1.3 + 2/3.5 + 2/5.7 +…+ 2/((2n+1)(2n+3))`

    `=1/1 – 1/3 + 1/3 – 1/5+ 1/5- 1/7 +…+ 1/(2n+1)- 1/(2n+3)`

    `=1 – 1/(2n+3)`

    c) Đặt `A=1/3 + 1/15 + 1/35 + 1/63 + 1/99`

    `A= 1/1.3 + 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11`

    `2A = 2/1.3 + 2/3.5 + 2/5.7 + 2/7.9 + 2/9.11`

    `2A= 1/1 – 1/3 + 1/3 -1/5 + 1/5- 1/7 + 1/7- 1/9 + 1/9 – 1/11`

    `2A= 1 – 1/11`

    `2A= 10/11`

    `A= 10/11 :2`

    `A= 10/11 . 1/2`

    `A= 5/11`

    Vậy `A= 5/11`

     

    Bình luận
  2. `a)` $\dfrac{1}{1.2}$ + $\dfrac{1}{2.3}$ + $\dfrac{1}{3.4}$ + …. + $\dfrac{1}{a(a+1)}$ 

    ` = 1/1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 + … + 1/a – 1/(a+1)`

    ` = 1/1 + ( – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 + … + 1/a ) – 1/(a+1) `

     ` = 1/1 + 0 – 1/(a+1) `

    ` =1/1 – 1/(a +1 ) = (a+1)/(a+1) – 1/(a+1) = a/(a+1)`

    `b)` $\dfrac{2}{1.3}$ + $\dfrac{2}{3.5}$ + $\dfrac{2}{5.7}$ + … + $\dfrac{2}{(2n+1 )(2n+3)}$ 

    `= 1/1 – 1/3 + 1/3 – 1/5 + 1/5 – 1/7 + …. +  1/(2n+1) – 1/(2n+3)`

    `= 1/1 + 0 – 1/(2n+3)`

    `= 1/1 – 1/(2n+3) = (2n+3)/(2n+3) – 1/(2n+3) = (2n+2)/(2n+3) `

    `c) 1/3 + 1/15 + 1/35 + 1/63 + 1/99`

    `= 1/(1.3) + 1/(3.5) + 1/(5.7) + 1/(7.9) + 1/(9.11)`

    Đặt `B` = ` 1/(1.3) + 1/(3.5) + 1/(5.7) + 1/(7.9) + 1/(9.11)`

    `2B = 2/(1.3) + 2/(3.5) + 2/(5.7) + 2/(7.9) + 2/(9.11) `

    `2B = 1/1 – 1/3 + 1/3 – 1/5 + …. + 1/9 – 1/11 `

    `2B = 1/1 – 1/11 = 10/11`

    `→ B = 10/11 : 2 = 10/11 . 1/2 = 5/11`

    Bình luận

Viết một bình luận