tính tổng sau S= 1. 2^2+ 2. 3^2+ 3. 4^2+……+2018 . 2019^2 làm theo cách lớp 6 nhé 01/08/2021 Bởi Ruby tính tổng sau S= 1. 2^2+ 2. 3^2+ 3. 4^2+……+2018 . 2019^2 làm theo cách lớp 6 nhé
Đáp án: Giải thích các bước giải: S=1.$2^{2}$+2.$3^{2}$+3.$4^{2}$+…+2018.$2019^{2}$ S=$\frac{2018 . 2019 . 2020 . 2021}{4}$ – $\frac{2018.2019.2020}{3}$ Bình luận
Đáp án: $S=1.2^2+2.3^2+3.4^2+..+2018.2019^2=\dfrac{2018.2019.2020.2021}{4}-\dfrac{2018.2019.2020}{3}$ Giải thích các bước giải: Ta có: $S=1.2^2+2.3^2+3.4^2+..+2018.2019^2$ $\rightarrow S=1.2.2+2.3.3+3.4.4+…+2018.2019.2019$ $\rightarrow S=1.2.(3-1)+2.3.(4-1)+..+2018.2019.(2020-1)$ $\rightarrow S=1.2.3-1.2+2.3.4-2.3+…+2018.2019.2020-2018.2019$ $\rightarrow S=1.2.3+2.3.4+3.4.5+..+2018.2019.2020-(1.2+2.3+3.4+..+2018.2019)$ Ta có: $A=1.2.3+2.3.4+3.4.5+..+2018.2019.2020$ $\rightarrow 4A=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+..+2018.2019.2020.(2021-2017)$ $\rightarrow 4A=1.2.3.4-0.1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+..+2018.2019.2020.2021-2017.2018.2019.2020$ $\rightarrow 4A=2018.2019.2020.2021$ $\rightarrow A=\dfrac{2018.2019.2020.2021}{4}$ Lại có: $B=1.2+2.3+3.4+..+2018.2019$ $\rightarrow 3B=1.2.3+2.3.3+3.4.3+…+2018.2019.3$ $\rightarrow 3B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+…+2018.2019.(2020-2017)$ $\rightarrow 3B=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+…+2018.2019.2020-2017.2018.2019$ $\rightarrow 3B=2018.2019.2020$ $\rightarrow B=\dfrac{2018.2019.2020}{3}$ $\rightarrow S=A-B=\dfrac{2018.2019.2020.2021}{4}-\dfrac{2018.2019.2020}{3}$ Bình luận
Đáp án:
Giải thích các bước giải:
S=1.$2^{2}$+2.$3^{2}$+3.$4^{2}$+…+2018.$2019^{2}$
S=$\frac{2018 . 2019 . 2020 . 2021}{4}$ – $\frac{2018.2019.2020}{3}$
Đáp án:
$S=1.2^2+2.3^2+3.4^2+..+2018.2019^2=\dfrac{2018.2019.2020.2021}{4}-\dfrac{2018.2019.2020}{3}$
Giải thích các bước giải:
Ta có:
$S=1.2^2+2.3^2+3.4^2+..+2018.2019^2$
$\rightarrow S=1.2.2+2.3.3+3.4.4+…+2018.2019.2019$
$\rightarrow S=1.2.(3-1)+2.3.(4-1)+..+2018.2019.(2020-1)$
$\rightarrow S=1.2.3-1.2+2.3.4-2.3+…+2018.2019.2020-2018.2019$
$\rightarrow S=1.2.3+2.3.4+3.4.5+..+2018.2019.2020-(1.2+2.3+3.4+..+2018.2019)$
Ta có:
$A=1.2.3+2.3.4+3.4.5+..+2018.2019.2020$
$\rightarrow 4A=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+..+2018.2019.2020.(2021-2017)$
$\rightarrow 4A=1.2.3.4-0.1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+..+2018.2019.2020.2021-2017.2018.2019.2020$
$\rightarrow 4A=2018.2019.2020.2021$
$\rightarrow A=\dfrac{2018.2019.2020.2021}{4}$
Lại có:
$B=1.2+2.3+3.4+..+2018.2019$
$\rightarrow 3B=1.2.3+2.3.3+3.4.3+…+2018.2019.3$
$\rightarrow 3B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+…+2018.2019.(2020-2017)$
$\rightarrow 3B=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+…+2018.2019.2020-2017.2018.2019$
$\rightarrow 3B=2018.2019.2020$
$\rightarrow B=\dfrac{2018.2019.2020}{3}$
$\rightarrow S=A-B=\dfrac{2018.2019.2020.2021}{4}-\dfrac{2018.2019.2020}{3}$