Trong kì thi HSG cấp tỉnh của THPT Hùng Vương có 10 HS đạt giải trong đó 4 HS nữ, nhà trường muốn chọn 1 nhóm, 5 hS trong số 10 HS trong lễ khen thưở

Trong kì thi HSG cấp tỉnh của THPT Hùng Vương có 10 HS đạt giải trong đó 4 HS nữ, nhà trường muốn chọn 1 nhóm, 5 hS trong số 10 HS trong lễ khen thưởng cuối kì I. Tính xác suất chọn được 1 nhóm HS có cả nam nữ biết số HS nam nhỏ HS nữ.

0 bình luận về “Trong kì thi HSG cấp tỉnh của THPT Hùng Vương có 10 HS đạt giải trong đó 4 HS nữ, nhà trường muốn chọn 1 nhóm, 5 hS trong số 10 HS trong lễ khen thưở”

  1. Đáp án:

    \(P\left( A \right) = \frac{{180}}{{C_{10}^5}} = \frac{5}{7}.\)  

    Giải thích các bước giải:

    Số cách chọn 5 học sinh trong 10 học sinh để tạo thành nhóm là: \({n_\Omega } = C_{10}^5\) cách chọn.

    Gọi biến cố A: “Nhóm 5 học sinh trong đó có số học sinh nam nhỏ hơn số học sinh nữ”.

    Khi đó ta có: \({n_A} = C_6^1C_5^4 + C_6^2C_5^3 = 180\) cách.

    Vậy \(P\left( A \right) = \frac{{180}}{{C_{10}^5}} = \frac{5}{7}.\)  

    Bình luận

Viết một bình luận