Trong mặt phẳng Oxy cho đoạn thẳng d : 5x-3y+15=0. Tìm ảnh của đoạn thẳng d qua phép quay tâm (0;90 độ)

Trong mặt phẳng Oxy cho đoạn thẳng d : 5x-3y+15=0. Tìm ảnh của đoạn thẳng d qua phép quay tâm (0;90 độ)

0 bình luận về “Trong mặt phẳng Oxy cho đoạn thẳng d : 5x-3y+15=0. Tìm ảnh của đoạn thẳng d qua phép quay tâm (0;90 độ)”

  1. Đáp án: Ảnh là đường thẳng $d’: 3x+5y\pm15=0$

     

    Giải thích các bước giải:

    Chọn 2 điểm bất kỳ thuộc đường thẳng $d$ là $A(0;5)$ và $B(-3;0)$

    – Nếu là quay $90^o$ theo chiều dương (ngược chiều kim đồng hồ) ta có

    $Q_{(O;90^o)}A(0;5)=A'(-5;0)$

    $Q_{O;90^o}B(-3;0)=B'(0;-3)$

    Ảnh của đường thẳng $d$ là đường thẳng $d’$ đi qua 2 điểm $A’$ và $B’$

    $A'(-5;0)$ và vectơ chỉ phương $\vec u=\vec{A’B’}=(5;-3)\Rightarrow \vec n(3;5)$

    Phương trình đường thẳng $d’$ là: $3(x+5)+5y=0$

    $\Leftrightarrow 3x+5y+15=0$

    – Nếu quay $90^o$ theo chiều âm (cùng chiều kim đồng hồ)

    $Q(O,90^o)A=(5;0)$

    $Q(O,90^o)B=(0;3)$

    Làm tương tự ta được phương trình đường thẳng $d’$ là

    $3x+5y-15=0$

    Vậy phương trình đường thẳng $d’$ là

    $3x+5y\pm15=0$

    Bình luận
  2. Gọi d’ là ảnh của d qua phép quay.

    Do là phép quay $90^{\circ}$ nên pháp tuyến của d là chỉ phương của d’. Do đó pháp tuyến của d’ là v(3,5).

    Vậy ptrinh của $d’: 3x + 5y + c = 0$.

    Hơn nữa, do phép quay nên khoảng cách từ O đến d’ = kcach từ O đến d, tức là

    $|5.0 – 3.0 + 15| = |3.0 + 5.0 + c|$.

    Vậy $c \pm 15$.

    Vậy ảnh của d qua phép quay là

    $d’: 3x + 5y + 15=0$ hoặc $d’: 3x + 5y – 15 = 0$.

    Bình luận

Viết một bình luận