Với x>4, x$\neq$9 tìm GTNN của B= $\frac{-3}{\sqrt[]{x}-2 }$ .(x+1) 08/07/2021 Bởi Nevaeh Với x>4, x$\neq$9 tìm GTNN của B= $\frac{-3}{\sqrt[]{x}-2 }$ .(x+1)
Đáp án: $\begin{array}{l}Dkxd:x > 4;x \ne 9\\B = \dfrac{{ – 3}}{{\sqrt x – 2}}\left( {x + 1} \right)\\ = \dfrac{{ – 3\left( {x + 1} \right)}}{{\sqrt x – 2}}\\ = \dfrac{{ – 3x – 3}}{{\sqrt x – 2}}\\ = \dfrac{{ – 3x + 12 – 12 – 3}}{{\sqrt x – 2}}\\ = \dfrac{{ – 3\left( {x – 4} \right) – 15}}{{\sqrt x – 2}}\\ = \dfrac{{ – 3\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right) – 15}}{{\sqrt x – 2}}\\ = – 3\left( {\sqrt x + 2} \right) – \dfrac{{15}}{{\sqrt x – 2}}\\ = – 3\left( {\sqrt x – 2} \right) – \dfrac{{15}}{{\sqrt x – 2}} – 6 – 6\\ = – \left[ {3\left( {\sqrt x – 2} \right) + \dfrac{{15}}{{\sqrt x – 2}}} \right] – 12\\Do:x > 4 \Rightarrow \sqrt x – 2 > 0\\Theo\,Co – si:\\3\left( {\sqrt x – 2} \right) + \dfrac{{15}}{{\sqrt x – 2}} \ge 2.\sqrt {3\left( {\sqrt x – 2} \right).\dfrac{{15}}{{\sqrt x – 2}}} \\ \Rightarrow 3\left( {\sqrt x – 2} \right) + \dfrac{{15}}{{\sqrt x – 2}} \ge 2.3.\sqrt 5 = 6\sqrt 5 \\ \Rightarrow – \left[ {3\left( {\sqrt x – 2} \right) + \dfrac{{15}}{{\sqrt x – 2}}} \right] \le – 6\sqrt 5 \\ \Rightarrow B \le – 6\sqrt 5 – 12\\ \Rightarrow GTLN:B = – 6\sqrt 5 – 12\\Khi:3\left( {\sqrt x – 2} \right) = \dfrac{{15}}{{\sqrt x – 2}}\\ \Rightarrow {\left( {\sqrt x – 2} \right)^2} = 5\\ \Rightarrow \sqrt x – 2 = \sqrt 5 \\ \Rightarrow \sqrt x = 2 + \sqrt 5 \\ \Rightarrow x = 9 + 4\sqrt 5 \left( {tmdk} \right)\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
Dkxd:x > 4;x \ne 9\\
B = \dfrac{{ – 3}}{{\sqrt x – 2}}\left( {x + 1} \right)\\
= \dfrac{{ – 3\left( {x + 1} \right)}}{{\sqrt x – 2}}\\
= \dfrac{{ – 3x – 3}}{{\sqrt x – 2}}\\
= \dfrac{{ – 3x + 12 – 12 – 3}}{{\sqrt x – 2}}\\
= \dfrac{{ – 3\left( {x – 4} \right) – 15}}{{\sqrt x – 2}}\\
= \dfrac{{ – 3\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right) – 15}}{{\sqrt x – 2}}\\
= – 3\left( {\sqrt x + 2} \right) – \dfrac{{15}}{{\sqrt x – 2}}\\
= – 3\left( {\sqrt x – 2} \right) – \dfrac{{15}}{{\sqrt x – 2}} – 6 – 6\\
= – \left[ {3\left( {\sqrt x – 2} \right) + \dfrac{{15}}{{\sqrt x – 2}}} \right] – 12\\
Do:x > 4 \Rightarrow \sqrt x – 2 > 0\\
Theo\,Co – si:\\
3\left( {\sqrt x – 2} \right) + \dfrac{{15}}{{\sqrt x – 2}} \ge 2.\sqrt {3\left( {\sqrt x – 2} \right).\dfrac{{15}}{{\sqrt x – 2}}} \\
\Rightarrow 3\left( {\sqrt x – 2} \right) + \dfrac{{15}}{{\sqrt x – 2}} \ge 2.3.\sqrt 5 = 6\sqrt 5 \\
\Rightarrow – \left[ {3\left( {\sqrt x – 2} \right) + \dfrac{{15}}{{\sqrt x – 2}}} \right] \le – 6\sqrt 5 \\
\Rightarrow B \le – 6\sqrt 5 – 12\\
\Rightarrow GTLN:B = – 6\sqrt 5 – 12\\
Khi:3\left( {\sqrt x – 2} \right) = \dfrac{{15}}{{\sqrt x – 2}}\\
\Rightarrow {\left( {\sqrt x – 2} \right)^2} = 5\\
\Rightarrow \sqrt x – 2 = \sqrt 5 \\
\Rightarrow \sqrt x = 2 + \sqrt 5 \\
\Rightarrow x = 9 + 4\sqrt 5 \left( {tmdk} \right)
\end{array}$