Với a,b,c là độ dài ba cạn của một tam giác chứng minh rằng: a bình + b bình + c bình < 2.(ab + bc + ca). Giúp mik với mik đang cần gấp.
Với a,b,c là độ dài ba cạn của một tam giác chứng minh rằng: a bình + b bình + c bình < 2.(ab + bc + ca). Giúp mik với mik đang cần gấp.
Ta có:
a<b+c (BĐT Δ)
⇒a²<a(b+c)
⇔a²<ab+ac
b<a+c
⇒b²<b(a+c)
⇔b²<ab+bc
c<a+b
⇒c²<c(a+b)
⇔c²>ca+cb
Do đó a²+b²+c²<ab+ac+ab+bc+ca+cb=2(ab+ba+ca)
CHÚC BẠN HỌC TỐT!!!
CHO MÌNH XIN 5 SAO+CÂU TRẢ LỜI HAY NHẤT NHA, THANKS
Đáp án:
Áp dụng bất đẳng thức trong tam giác ta có:
\(\begin{cases}a+b>c\\b+c>a\\c+a>b\\\end{cases}\)
`=>` \(\begin{cases}a.c+b.c>c^2\\a.b+a.c>a^2\\c.b+a.b>b^2\\\end{cases}\)
`=>` \(\begin{cases}ac+bc>c^2\\ab+ac>a^2\\bc+ab>b^2\\\end{cases}\)
Cộng từng vế ta có:
`ac+bc+ab+ac+bc+ab>a^2+b^2+c^2`
`<=>2(ab+bc+ca)>a^2+b^2+c^2`(đpcm).