y′=(2x+1)′(x–3)–(x–3)′(2x+1)(x–3)2=–7(x–3)2

y′=(2x+1)′(x–3)–(x–3)′(2x+1)(x–3)2=–7(x–3)2

0 bình luận về “y′=(2x+1)′(x–3)–(x–3)′(2x+1)(x–3)2=–7(x–3)2”

  1. Đáp án:

    y′=(2x+1)′(x−3)−(x−3)′(2x+1).(x−3)2

    =2(x−3)−(2x+1)(x−3)

    =(x−3)(2−2x−1)

    =(x−3)(−2x+1)

    WODVoHoa

     

    Bình luận
  2. `y′=(2x+1)′(x−3)−(x−3)′(2x+1)(x−3)^2`
    `=2(x−3)−(2x+1)(x−3)=2(x−3)−(2x+1)(x−3)`
    `=(x−3)(2−2x−1)=(x−3)(2−2x−1)`
    `=(x−3)(−2x+1)`
    `=(x−3)(−2x+1)`
    $=\left\{\matrix{x-3=0\hfill\ \cr -2x+1=0\hfill}\right.$
    $=\left\{\matrix{x=3\hfill\ \cr -2x=-1\hfill}\right.$
    $=\left\{\matrix{x=3\hfill\ \cr x=1/2\hfill}\right.$

    $#Blink$ $\boxed{\text{@Rosé}}$

    Bình luận

Viết một bình luận