(X+y)^2-25= 3x^2-6xy+3y^2= (X^4-2x^3+4x^2-8x):(x^2+4)= (X^2+2x^3+10x-25):(x^2+5)=

(X+y)^2-25=
3x^2-6xy+3y^2=
(X^4-2x^3+4x^2-8x):(x^2+4)=
(X^2+2x^3+10x-25):(x^2+5)=

0 bình luận về “(X+y)^2-25= 3x^2-6xy+3y^2= (X^4-2x^3+4x^2-8x):(x^2+4)= (X^2+2x^3+10x-25):(x^2+5)=”

  1. Đáp án:

    $\begin{array}{l}
     + ){\left( {x + y} \right)^2} – 25 = {\left( {x + y} \right)^2} – {5^2} = \left( {x + y – 5} \right)\left( {x + y + 5} \right)\\
     + )3{x^2} – 6xy + 3{y^2} = 3\left( {{x^2} – 2xy + {y^2}} \right) = 3{\left( {x – y} \right)^2}\\
     + )\left( {{x^4} – 2{x^3} + 4{x^2} – 8x} \right):\left( {{x^2} + 4} \right)\\
     = \left[ {{x^3}\left( {x – 2} \right) + 4x\left( {x – 2} \right)} \right]:\left( {{x^2} + 4} \right)\\
     = \left( {x – 2} \right)\left( {{x^3} + 4x} \right):\left( {{x^2} + 4} \right)\\
     = \left( {x – 2} \right).x.\left( {{x^2} + 4} \right):\left( {{x^2} + 4} \right)\\
     = \left( {x – 2} \right).x\\
     + )\frac{{{x^4} + 2{x^3} + 10x – 25}}{{{x^2} + 5}}\\
     = \frac{{\left( {{x^4} – 25} \right) + \left( {2{x^3} + 10x} \right)}}{{{x^2} + 5}}\\
     = \frac{{\left( {{x^2} + 5} \right)\left( {{x^2} – 5} \right) + 2x\left( {{x^2} + 5} \right)}}{{{x^2} + 5}}\\
     = \frac{{\left( {{x^2} + 5} \right)\left( {{x^2} – 5 + 2x} \right)}}{{{x^2} + 5}}\\
     = {x^2} + 2x – 5
    \end{array}$

    Bình luận

Viết một bình luận