( x -y ) mũ 3 + ( y – z ) mũ 3 + ( z -x ) mũ 3 giúp mình vs ạk Phân Tích Đa Thức Thành Nhân Tử 03/07/2021 Bởi Harper ( x -y ) mũ 3 + ( y – z ) mũ 3 + ( z -x ) mũ 3 giúp mình vs ạk Phân Tích Đa Thức Thành Nhân Tử
$(x-y)^3+(y-z)^3+(z-x)^3$ $=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3zy^2-z^3+z^3-3z^2x+3zx^2-x^3$ $=-3x^2y+3xy^2-3y^2z+3zy^2-3z^2x+3zx^2$ $=-(3x^2y-3x^2z)+(3xy^2-3xz^2)-(3y^2z-3yz^2)$ $=-3x^2.(y-z)+3x.(y^2-z^2)-3yz.(y-z)$ $=-3x^2.(y-z)+3x.(y-z).(y+z))-3yz.(y-z)$ $=(y-z).(-3x^2+3xy+3xz-3yz)$ $=(y-z).[-3x.(x-y)+3z.(x-y)$ $=(y-z).(x-y).(-3x+3z)$ $=-3.(x-y).(x-z).(y-z)$ Bình luận
Đáp án: $=-3.(x-y).(x-z).(y-z)$ Giải thích các bước giải: $(x-y)^3+(y-z)^3+(z-x)^3$ $=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3zy^2-z^3+z^3-3z^2x+3zx^2-x^3$ $=-3x^2y+3xy^2-3y^2z+3zy^2-3z^2x+3zx^2$ $=-(3x^2y-3x^2z)+(3xy^2-3xz^2)-(3y^2z-3yz^2)$ $=-3x^2.(y-z)+3x.(y^2-z^2)-3yz.(y-z)$ $=-3x^2.(y-z)+3x.(y-z).(y+z))-3yz.(y-z)$ $=(y-z).(-3x^2+3xy+3xz-3yz)$ $=(y-z).[-3x.(x-y)+3z.(x-y)$ $=(y-z).(x-y).(-3x+3z)$ $=-3.(x-y).(x-z).(y-z)$ Bình luận
$(x-y)^3+(y-z)^3+(z-x)^3$
$=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3zy^2-z^3+z^3-3z^2x+3zx^2-x^3$
$=-3x^2y+3xy^2-3y^2z+3zy^2-3z^2x+3zx^2$
$=-(3x^2y-3x^2z)+(3xy^2-3xz^2)-(3y^2z-3yz^2)$
$=-3x^2.(y-z)+3x.(y^2-z^2)-3yz.(y-z)$
$=-3x^2.(y-z)+3x.(y-z).(y+z))-3yz.(y-z)$
$=(y-z).(-3x^2+3xy+3xz-3yz)$
$=(y-z).[-3x.(x-y)+3z.(x-y)$
$=(y-z).(x-y).(-3x+3z)$
$=-3.(x-y).(x-z).(y-z)$
Đáp án:
$=-3.(x-y).(x-z).(y-z)$
Giải thích các bước giải:
$(x-y)^3+(y-z)^3+(z-x)^3$
$=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3zy^2-z^3+z^3-3z^2x+3zx^2-x^3$
$=-3x^2y+3xy^2-3y^2z+3zy^2-3z^2x+3zx^2$
$=-(3x^2y-3x^2z)+(3xy^2-3xz^2)-(3y^2z-3yz^2)$
$=-3x^2.(y-z)+3x.(y^2-z^2)-3yz.(y-z)$
$=-3x^2.(y-z)+3x.(y-z).(y+z))-3yz.(y-z)$
$=(y-z).(-3x^2+3xy+3xz-3yz)$
$=(y-z).[-3x.(x-y)+3z.(x-y)$
$=(y-z).(x-y).(-3x+3z)$
$=-3.(x-y).(x-z).(y-z)$