x,y thuộc R (x-1)^3+x-1=y^3+y Tìm max B=-x^2-y^2+3x-2y+5 07/07/2021 Bởi Maya x,y thuộc R (x-1)^3+x-1=y^3+y Tìm max B=-x^2-y^2+3x-2y+5
Đáp án: $MaxB = \dfrac{{57}}{8} \Leftrightarrow \left( {x;y} \right) = \left( {\dfrac{3}{4};\dfrac{{ – 1}}{4}} \right)$ Giải thích các bước giải: Ta có: $\begin{array}{l}{\left( {x – 1} \right)^3} + x – 1 = {y^3} + y\\ \Leftrightarrow {\left( {x – 1} \right)^3} – {y^3} + \left( {x – 1} \right) – y = 0\\ \Leftrightarrow \left( {x – 1 – y} \right)\left( {{{\left( {x – 1} \right)}^2} + \left( {x – 1} \right)y + {y^2}} \right) + \left( {x – 1 – y} \right) = 0\\ \Leftrightarrow \left( {x – 1 – y} \right)\left( {{{\left( {x – 1} \right)}^2} + \left( {x – 1} \right)y + {y^2} + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x – 1 – y = 0\\{\left( {x – 1} \right)^2} + \left( {x – 1} \right)y + {y^2} + 1 = 0\left( {mt} \right)\end{array} \right.\\ \Leftrightarrow x – 1 – y = 0\\ \Leftrightarrow x = y + 1\end{array}$ Khi đó: $\begin{array}{l}B = – {x^2} – {y^2} + 3x – 2y + 5\\ = – {\left( {y + 1} \right)^2} – {y^2} + 3\left( {y + 1} \right) – 2y + 5\\ = – 2{y^2} – y + 7\\ = – 2\left( {{y^2} + 2.y.\dfrac{1}{4} + \dfrac{1}{{16}}} \right) + \dfrac{{57}}{8}\\ = – 2{\left( {y + \dfrac{1}{4}} \right)^2} + \dfrac{{57}}{8}\\ \le \dfrac{{57}}{8},\forall y \in R\end{array}$ Dấu bằng xảy ra $ \Leftrightarrow {\left( {y + \dfrac{1}{4}} \right)^2} = 0 \Leftrightarrow y = \dfrac{{ – 1}}{4} \Rightarrow x = y + 1 = \dfrac{3}{4}$ Vậy $MaxB = \dfrac{{57}}{8} \Leftrightarrow \left( {x;y} \right) = \left( {\dfrac{3}{4};\dfrac{{ – 1}}{4}} \right)$ Bình luận
Đáp án:
$MaxB = \dfrac{{57}}{8} \Leftrightarrow \left( {x;y} \right) = \left( {\dfrac{3}{4};\dfrac{{ – 1}}{4}} \right)$
Giải thích các bước giải:
Ta có:
$\begin{array}{l}
{\left( {x – 1} \right)^3} + x – 1 = {y^3} + y\\
\Leftrightarrow {\left( {x – 1} \right)^3} – {y^3} + \left( {x – 1} \right) – y = 0\\
\Leftrightarrow \left( {x – 1 – y} \right)\left( {{{\left( {x – 1} \right)}^2} + \left( {x – 1} \right)y + {y^2}} \right) + \left( {x – 1 – y} \right) = 0\\
\Leftrightarrow \left( {x – 1 – y} \right)\left( {{{\left( {x – 1} \right)}^2} + \left( {x – 1} \right)y + {y^2} + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x – 1 – y = 0\\
{\left( {x – 1} \right)^2} + \left( {x – 1} \right)y + {y^2} + 1 = 0\left( {mt} \right)
\end{array} \right.\\
\Leftrightarrow x – 1 – y = 0\\
\Leftrightarrow x = y + 1
\end{array}$
Khi đó:
$\begin{array}{l}
B = – {x^2} – {y^2} + 3x – 2y + 5\\
= – {\left( {y + 1} \right)^2} – {y^2} + 3\left( {y + 1} \right) – 2y + 5\\
= – 2{y^2} – y + 7\\
= – 2\left( {{y^2} + 2.y.\dfrac{1}{4} + \dfrac{1}{{16}}} \right) + \dfrac{{57}}{8}\\
= – 2{\left( {y + \dfrac{1}{4}} \right)^2} + \dfrac{{57}}{8}\\
\le \dfrac{{57}}{8},\forall y \in R
\end{array}$
Dấu bằng xảy ra
$ \Leftrightarrow {\left( {y + \dfrac{1}{4}} \right)^2} = 0 \Leftrightarrow y = \dfrac{{ – 1}}{4} \Rightarrow x = y + 1 = \dfrac{3}{4}$
Vậy $MaxB = \dfrac{{57}}{8} \Leftrightarrow \left( {x;y} \right) = \left( {\dfrac{3}{4};\dfrac{{ – 1}}{4}} \right)$