`x;y;z ≥0` `(xz)^2+(yz)^2+1 ≤3z` tìm`minP=1/((x+1)^2)+8/((y+3)^2)+(4z^2)/((1+2z)^2)` 23/07/2021 Bởi Hadley `x;y;z ≥0` `(xz)^2+(yz)^2+1 ≤3z` tìm`minP=1/((x+1)^2)+8/((y+3)^2)+(4z^2)/((1+2z)^2)`
`1/a^2+1/b^2 ≥4/(a^2+b^2)≥8/(2(a^2+b^2))≥8/(a+b)^2` `x^2z^2+y^2z^2+1≤3z` `⇔x^2+y^2+1/(z^2)≤3/z` `x^2+y^2+1/z^2+1+1+4≥2x+2y+4/z` mặt khác : `x^2+y^2+1/z^2+1+1+4≤3/z+6` `⇔3/z+6≥2x+2y+4/z` `⇔6≥1/z +2x+2y` `⇔P=1/(x+1)^2+8/(y+3)^2+(4z^2)/(1+2z)^2` `⇔P=1/(x+1)^2+8/(y+3)^2+(1)/(1/(2z)+1)^2≥8/(x+1/(2z)+2)^2+8/(y+3)^2≥(8^2)/(x+1/(2z)+y+5)^2≥(64)/((256)/(4))≥(64)/(64)=1` `”=”`xảy ra khi :`x=y=1` `z=1/2` Bình luận
`1/a^2+1/b^2 ≥4/(a^2+b^2)≥8/(2(a^2+b^2))≥8/(a+b)^2`
`x^2z^2+y^2z^2+1≤3z`
`⇔x^2+y^2+1/(z^2)≤3/z`
`x^2+y^2+1/z^2+1+1+4≥2x+2y+4/z`
mặt khác :
`x^2+y^2+1/z^2+1+1+4≤3/z+6`
`⇔3/z+6≥2x+2y+4/z`
`⇔6≥1/z +2x+2y`
`⇔P=1/(x+1)^2+8/(y+3)^2+(4z^2)/(1+2z)^2`
`⇔P=1/(x+1)^2+8/(y+3)^2+(1)/(1/(2z)+1)^2≥8/(x+1/(2z)+2)^2+8/(y+3)^2≥(8^2)/(x+1/(2z)+y+5)^2≥(64)/((256)/(4))≥(64)/(64)=1`
`”=”`xảy ra khi :
`x=y=1`
`z=1/2`