x^2.y^2 trên xy : (x-y)^2+(x+y)^2 trên x^2-y^2 05/08/2021 Bởi Faith x^2.y^2 trên xy : (x-y)^2+(x+y)^2 trên x^2-y^2
Giải thích các bước giải: $\dfrac{x^2y^2}{xy}:(x-y)^2+\dfrac{(x+y)^2}{x^2-y^2}$ $=xy:(x-y)^2+\dfrac{(x+y)^2}{(x+y)(x-y)}$ $=\dfrac{xy}{(x-y)^2}+\dfrac{x+y}{x-y}$ $=\dfrac{xy}{(x-y)^2}+\dfrac{(x+y)(x-y)}{(x-y)^2}$ $=\dfrac{xy+(x+y)(x-y)}{(x-y)^2}$ $=\dfrac{xy+x^2-y^2}{(x-y)^2}$ Bình luận
x2y2xy:(x−y)2+(x+y)2x2−y2x2y2xy:(x−y)2+(x+y)2×2−y2 =xy:(x−y)2+(x+y)2(x+y)(x−y)=xy:(x−y)2+(x+y)2(x+y)(x−y) =xy(x−y)2+x+yx−y=xy(x−y)2+x+yx−y =xy(x−y)2+(x+y)(x−y)(x−y)2=xy(x−y)2+(x+y)(x−y)(x−y)2 =xy+(x+y)(x−y)(x−y)2=xy+(x+y)(x−y)(x−y)2 =xy+x2−y2(x−y)2 Bình luận
Giải thích các bước giải:
$\dfrac{x^2y^2}{xy}:(x-y)^2+\dfrac{(x+y)^2}{x^2-y^2}$
$=xy:(x-y)^2+\dfrac{(x+y)^2}{(x+y)(x-y)}$
$=\dfrac{xy}{(x-y)^2}+\dfrac{x+y}{x-y}$
$=\dfrac{xy}{(x-y)^2}+\dfrac{(x+y)(x-y)}{(x-y)^2}$
$=\dfrac{xy+(x+y)(x-y)}{(x-y)^2}$
$=\dfrac{xy+x^2-y^2}{(x-y)^2}$
x2y2xy:(x−y)2+(x+y)2x2−y2x2y2xy:(x−y)2+(x+y)2×2−y2
=xy:(x−y)2+(x+y)2(x+y)(x−y)=xy:(x−y)2+(x+y)2(x+y)(x−y)
=xy(x−y)2+x+yx−y=xy(x−y)2+x+yx−y
=xy(x−y)2+(x+y)(x−y)(x−y)2=xy(x−y)2+(x+y)(x−y)(x−y)2
=xy+(x+y)(x−y)(x−y)2=xy+(x+y)(x−y)(x−y)2
=xy+x2−y2(x−y)2