( 5x- 3x ) ² = ( 1- 2x) ² = 0 Tìm GTNN,GTLN 2x ² – 3x -9 D = 6x – x^2 + 5 F= x-x^2 – 2020 E= ( x -1) ² + ( x-3) ² 27/07/2021 Bởi Camila ( 5x- 3x ) ² = ( 1- 2x) ² = 0 Tìm GTNN,GTLN 2x ² – 3x -9 D = 6x – x^2 + 5 F= x-x^2 – 2020 E= ( x -1) ² + ( x-3) ²
( 5x- 3x ) ² = ( 1- 2x) ² = 0 ??? Đề sai ak? Tìm GTNN,GTLN: +, Ta có: 2x ² – 3x -9 = 2(x² – $\frac{3}{2}$x – $\frac{9}{2}$) = 2[(x² – 2.x.$\frac{3}{4}$ + $\frac{9}{16}$) – $\frac{81}{16}$] = 2(x – $\frac{3}{4}$)² – $\frac{81}{8}$ Vì (x – $\frac{3}{4}$)² ≥ 0 ⇒ 2x² – 3x – 9 ≥ -$\frac{81}{8}$ Dấu “=” xảy ra khi (x – $\frac{3}{4}$)² = 0 ⇒ x = $\frac{3}{4}$ Vậy Min của 2x² – 3x – 9 = -$\frac{81}{8}$ khi x = $\frac{3}{4}$ +, Ta có: D = 6x – x^2 + 5 ⇔ D = -(x² – 6x – 5) ⇔ D = -[(x² – 6x + 9) – 14] ⇔ D = -(x – 3)² + 14 Vì (x – 3)² ≥ 0 ⇒ D ≤ 14 Dấu “=” xảy ra khi (x – 3)² = 0 ⇒ x = 3 Vậy Max D = 14 khi x = 3 +, Ta có: F= x-x^2 – 2020 ⇔ F = -(x² – x + 2020) ⇔ F = -[(x² – 2.x.$\frac{1}{2}$ + $\frac{1}{4}$) + $\frac{8079}{4}$] ⇔ F = -(x – $\frac{1}{2}$)² – $\frac{8079}{4}$ Vì (x – $\frac{1}{2}$)² ≥ 0 ⇒ F ≤ -$\frac{8079}{4}$ Dấu “=” xảy ra khi (x – $\frac{1}{2}$)² = 0 ⇒ x = $\frac{1}{2}$ Vậy Max F = -$\frac{8079}{4}$ +, Ta có: E= ( x -1) ² + ( x-3) ² ⇔ E = x² – 2x + 1 + x² – 6x + 9 ⇔ E = 2x² – 8x + 10 ⇔ E = 2(x² – 4x + 5) ⇔ E = 2[(x² – 4x + 4) + 1] ⇔ E = 2(x – 2)² + 2 Vì (x – 2)² ≥ 0 ⇒ E ≥ 2 Dấu “=” xảy ra khi (x – 2)² = 0 ⇒ x = 2 Vậy Min E = 2 khi x = 2 Bình luận
Đáp án: $(5x-3x)^2 – (1-2x)^2 = 0$ $⇔ (2x)^2 – (1-2x)^2 =0$ $⇔(2x+1-2x)(2x-1+2x) =0$ $⇔4x-1=0$ $⇔4x=1$ $⇔x = \dfrac{1}{4}$ Vậy $x=\dfrac{1}{4}$ $2x^2-3x-9$ $=(\sqrt[]{2}x)^2 -2 . \sqrt[]{2}x . \dfrac{3\sqrt[]{2}}{4} + \dfrac{9}{8} -\dfrac{81}{8}$ $= (\sqrt[]{2}x – \dfrac{3\sqrt[]{2}}{4})^2-\dfrac{81}{8}$ Vì $(\sqrt[]{2}x -\dfrac{3\sqrt[]{2}}{4})^2 ≥ 0 $ Nên $(\sqrt[]{2}x -\dfrac{3\sqrt[]{2}}{4})^2 -\dfrac{81}{8} ≥ – \dfrac{81}{8}$ Dấu ”=” xảy ra khi $\sqrt[]{2}x – \dfrac{3\sqrt[]{2}}{4} =0⇔ x = \dfrac{3}{4}$ Vậy giá trị nhỏ nhất $=-\dfrac{81}{8}$ tại $x=\dfrac{3}{4}$ $D =6x-x^2+5$ $ = -(x^2-6x-5)$ $= -(x^2 -2.3.x +9-14)$ $ = -(x-3)^2+14$ Vì $-(x-3)^2 ≤ 0$ Nên $-(x-3)^2 +14 ≤ 14$ Dấu ”=” xảy ra khi $x-3=0⇔x=3$ Vậy Max D =14 tại $x=3$ $F = x – x^2 -2020$ $= -(x^2-x+2020)$ $= -(x^2 -2. x . \dfrac{1}{2} +\dfrac{1}{4} +2019,75)$ $ = -(x-\dfrac{1}{2})^2 – 2019,75$ Vì $-(x-\dfrac{1}{2})^2 ≤ 0$ Nên $-(x-\dfrac{1}{2})^2 – 2019,75 ≤ -2019,75$ Dấu ”=” xảy ra khi $x-\dfrac{1}{2} =0⇔x=\dfrac{1}{2}$ Vậy Max F $=-2019,75$ tại $x=\dfrac{1}{2}$ $E =(x-1)^2 +(x-3)^2$ $ = x^2 -2x+1 +x^2-6x+9$ $ =2x^2-8x+10$ $ = (\sqrt[]{2}x)^2 – 2 . \sqrt[]{2}x . 2√2 + 8+2$ $ =(\sqrt[]{2}x – 2√2)^2 +2$ Vì $(\sqrt[]{2}x -2√2)^2 ≥ 0$ Nên $(\sqrt[]{2}x -2√2)^2 +2 ≥ 2$ Dấu ”=” xảy ra khi $\sqrt[]{2}x-2√2 =0⇔x=2$ Vậy Min E $=2$ tại $x=2$ Bình luận
( 5x- 3x ) ² = ( 1- 2x) ² = 0
???
Đề sai ak?
Tìm GTNN,GTLN:
+, Ta có: 2x ² – 3x -9
= 2(x² – $\frac{3}{2}$x – $\frac{9}{2}$)
= 2[(x² – 2.x.$\frac{3}{4}$ + $\frac{9}{16}$) – $\frac{81}{16}$]
= 2(x – $\frac{3}{4}$)² – $\frac{81}{8}$
Vì (x – $\frac{3}{4}$)² ≥ 0 ⇒ 2x² – 3x – 9 ≥ -$\frac{81}{8}$
Dấu “=” xảy ra khi (x – $\frac{3}{4}$)² = 0 ⇒ x = $\frac{3}{4}$
Vậy Min của 2x² – 3x – 9 = -$\frac{81}{8}$ khi x = $\frac{3}{4}$
+, Ta có: D = 6x – x^2 + 5
⇔ D = -(x² – 6x – 5)
⇔ D = -[(x² – 6x + 9) – 14]
⇔ D = -(x – 3)² + 14
Vì (x – 3)² ≥ 0 ⇒ D ≤ 14
Dấu “=” xảy ra khi (x – 3)² = 0 ⇒ x = 3
Vậy Max D = 14 khi x = 3
+, Ta có: F= x-x^2 – 2020
⇔ F = -(x² – x + 2020)
⇔ F = -[(x² – 2.x.$\frac{1}{2}$ + $\frac{1}{4}$) + $\frac{8079}{4}$]
⇔ F = -(x – $\frac{1}{2}$)² – $\frac{8079}{4}$
Vì (x – $\frac{1}{2}$)² ≥ 0 ⇒ F ≤ -$\frac{8079}{4}$
Dấu “=” xảy ra khi (x – $\frac{1}{2}$)² = 0 ⇒ x = $\frac{1}{2}$
Vậy Max F = -$\frac{8079}{4}$
+, Ta có: E= ( x -1) ² + ( x-3) ²
⇔ E = x² – 2x + 1 + x² – 6x + 9
⇔ E = 2x² – 8x + 10
⇔ E = 2(x² – 4x + 5)
⇔ E = 2[(x² – 4x + 4) + 1]
⇔ E = 2(x – 2)² + 2
Vì (x – 2)² ≥ 0 ⇒ E ≥ 2
Dấu “=” xảy ra khi (x – 2)² = 0 ⇒ x = 2
Vậy Min E = 2 khi x = 2
Đáp án:
$(5x-3x)^2 – (1-2x)^2 = 0$
$⇔ (2x)^2 – (1-2x)^2 =0$
$⇔(2x+1-2x)(2x-1+2x) =0$
$⇔4x-1=0$
$⇔4x=1$
$⇔x = \dfrac{1}{4}$
Vậy $x=\dfrac{1}{4}$
$2x^2-3x-9$
$=(\sqrt[]{2}x)^2 -2 . \sqrt[]{2}x . \dfrac{3\sqrt[]{2}}{4} + \dfrac{9}{8} -\dfrac{81}{8}$
$= (\sqrt[]{2}x – \dfrac{3\sqrt[]{2}}{4})^2-\dfrac{81}{8}$
Vì $(\sqrt[]{2}x -\dfrac{3\sqrt[]{2}}{4})^2 ≥ 0 $
Nên $(\sqrt[]{2}x -\dfrac{3\sqrt[]{2}}{4})^2 -\dfrac{81}{8} ≥ – \dfrac{81}{8}$
Dấu ”=” xảy ra khi $\sqrt[]{2}x – \dfrac{3\sqrt[]{2}}{4} =0⇔ x = \dfrac{3}{4}$
Vậy giá trị nhỏ nhất $=-\dfrac{81}{8}$ tại $x=\dfrac{3}{4}$
$D =6x-x^2+5$
$ = -(x^2-6x-5)$
$= -(x^2 -2.3.x +9-14)$
$ = -(x-3)^2+14$
Vì $-(x-3)^2 ≤ 0$
Nên $-(x-3)^2 +14 ≤ 14$
Dấu ”=” xảy ra khi $x-3=0⇔x=3$
Vậy Max D =14 tại $x=3$
$F = x – x^2 -2020$
$= -(x^2-x+2020)$
$= -(x^2 -2. x . \dfrac{1}{2} +\dfrac{1}{4} +2019,75)$
$ = -(x-\dfrac{1}{2})^2 – 2019,75$
Vì $-(x-\dfrac{1}{2})^2 ≤ 0$
Nên $-(x-\dfrac{1}{2})^2 – 2019,75 ≤ -2019,75$
Dấu ”=” xảy ra khi $x-\dfrac{1}{2} =0⇔x=\dfrac{1}{2}$
Vậy Max F $=-2019,75$ tại $x=\dfrac{1}{2}$
$E =(x-1)^2 +(x-3)^2$
$ = x^2 -2x+1 +x^2-6x+9$
$ =2x^2-8x+10$
$ = (\sqrt[]{2}x)^2 – 2 . \sqrt[]{2}x . 2√2 + 8+2$
$ =(\sqrt[]{2}x – 2√2)^2 +2$
Vì $(\sqrt[]{2}x -2√2)^2 ≥ 0$
Nên $(\sqrt[]{2}x -2√2)^2 +2 ≥ 2$
Dấu ”=” xảy ra khi $\sqrt[]{2}x-2√2 =0⇔x=2$
Vậy Min E $=2$ tại $x=2$