Toán A=1+1/2-(1+2)+1/3-(1+2+3)+1/4-( 1+2+3+4)+…+1/16-(1+2+3+…+16) 15/10/2021 By Peyton A=1+1/2-(1+2)+1/3-(1+2+3)+1/4-( 1+2+3+4)+…+1/16-(1+2+3+…+16)
Ta có: ` A= 1+1/2 . (1+2)+3/1 . (1+2+3)+…+1/16 . (1+2+3+…+16) ` ` <=> A = 1+ 1/2 . 3 +…+1/16 . 136 ` ` <=> A =1+1,5+2+…+8,5 ` ` <=> A = \frac{ (8,5 + 1).[(8,5 – 1) : 0,5 + 1] }{2} ` ` <=> A = \frac{152}{2} ` ` <=> A = 76 ` Reply
Đáp án: Giải thích các bước giải: A= 1+1/2(1+2)+3/1(1+2+3)+ … +1/16(1+2+3+…+16) A= 1+ 1/2 . 3+…+1/16 . 136 A=1+1,5+2+…+8,5 A= ___( 8,5+1 )_[ (8,5-1) : 0,5+1 ]___ = 76 2 Reply
Ta có:
` A= 1+1/2 . (1+2)+3/1 . (1+2+3)+…+1/16 . (1+2+3+…+16) `
` <=> A = 1+ 1/2 . 3 +…+1/16 . 136 `
` <=> A =1+1,5+2+…+8,5 `
` <=> A = \frac{ (8,5 + 1).[(8,5 – 1) : 0,5 + 1] }{2} `
` <=> A = \frac{152}{2} `
` <=> A = 76 `
Đáp án:
Giải thích các bước giải:
A= 1+1/2(1+2)+3/1(1+2+3)+ … +1/16(1+2+3+…+16)
A= 1+ 1/2 . 3+…+1/16 . 136
A=1+1,5+2+…+8,5
A= ___( 8,5+1 )_[ (8,5-1) : 0,5+1 ]___ = 76
2